All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 154186 by daus last updated on 15/Sep/21
Answered by puissant last updated on 15/Sep/21
Ω=∫x3−7x2+8x+3x2−7x+12dx=∫x−4x−3x2−7x+12dx=12x2−∫4x−3x2−7x+12dx=12x2−2∫2x−32−112+112x2−7x+12dx=12x2−2∫2x−7x2−7x+12dx−11∫dxx2−7x+12=12x2−2ln∣x2−7x+12∣−11∫dx(x−72)−494+12=12x2−2ln∣x2−7x+12∣−11∫dx14[2(x−72)]2+1u=2(x−72)→dx=du2Ω=12x2−2ln∣x2−7x+12∣−22∫du1+u2=12x2−2ln∣x2−7x+12∣−22arctan(u)+C..∴∵Ω=12x2−2ln∣x2−7x+12∣−22arctan(2x−7)+C..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com