Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 155421 by SANOGO last updated on 30/Sep/21

Answered by puissant last updated on 30/Sep/21

Q=∫_0 ^(π/2) ((sint)/(1+cos^2 t))dt = −∫_0 ^(π/2) ((−sint)/(1+cos^2 t))dt  =−[arctan(cost)]_0 ^(π/2) = −(0−arctan(1))              ∴∵  Q = (π/4)..

Q=0π2sint1+cos2tdt=0π2sint1+cos2tdt=[arctan(cost)]0π2=(0arctan(1))∴∵Q=π4..

Commented by SANOGO last updated on 30/Sep/21

merci bien

mercibien

Answered by ArielVyny last updated on 30/Sep/21

u=tan((t/2))→du=(1/2)(1+u^2 )dt→dt=(2/(1+u^2 ))du  ∫_0 ^1 (((2u)/(1+u^2 ))/(1+(((1−u^2 )/(1+u^2 )))^2 )).(2/(1+u^2 ))du=∫_0 ^1 ((2u)/(1+u^2 )).(2/((1+u^2 )+(((1−u^2 )^2 )/(1+u^2 ))))du  ∫_0 ^1 ((4u)/((1+u^2 )^2 +(1−u^2 )^2 ))du=4∫_0 ^1 (u/(u^4 +2u^2 +1+u^4 −2u^2 +1))  4∫_0 ^1 (u/(2u^4 +2))du=2∫_0 ^1 (u/(u^4 +1))du  u^2 =x→2udu=dx  ∫_0 ^1 (dx/(x^2 +1))=∫_0 ^(π/2) ((sint)/(1+cos^2 t))dt=(π/4)

u=tan(t2)du=12(1+u2)dtdt=21+u2du012u1+u21+(1u21+u2)2.21+u2du=012u1+u2.2(1+u2)+(1u2)21+u2du014u(1+u2)2+(1u2)2du=401uu4+2u2+1+u42u2+1401u2u4+2du=201uu4+1duu2=x2udu=dx01dxx2+1=0π2sint1+cos2tdt=π4

Commented by SANOGO last updated on 30/Sep/21

merci bien

mercibien

Answered by physicstutes last updated on 30/Sep/21

let x = cos t ⇒ dx = −sin t dt   determinant ((t,0,(π/2)),(x,1,0))  ∫_0 ^(π/2) ((sin t)/(1+cos^2 t))dt = ∫_1 ^0 ((sin t)/(1+x^2 ))(−(dx/(sin t)))= ∫_0 ^1 (dx/(1+x^2 ))  = tan^(−1) (x)]_0 ^1 =(π/4)

letx=costdx=sintdtt0π2x10π20sint1+cos2tdt=01sint1+x2(dxsint)=10dx1+x2=tan1(x)]01=π4

Commented by SANOGO last updated on 30/Sep/21

merci bien

mercibien

Terms of Service

Privacy Policy

Contact: info@tinkutara.com