All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 155477 by alcohol last updated on 01/Oct/21
Answered by puissant last updated on 01/Oct/21
a)∀n∈N,f(n)=nf(1)f(2)=f(1+1)=f(1)+f(1)=2f(1)alors,onmontreparrecurrencequef(n)=nf(1)..Eneffet,laproprieteestvraieaurangn,alors,ona:f(n+1)=f(n)+f(1)=nf(1)+f(1)=(n+1)f(1).b)∀n∈Z,f(n)=nf(1)..f(0)=f(0+0)=f(0)+f(0)=2f(0)f(0)=2f(0)⇒f(0)=0maintenant,sinestunentiernegatif,−nestdoncpositifdonc−n+n=0⇒f(−n+n)=f(0)=0⇒f(−n)+f(n)=−nf(1)+f(n)⇒f(n)=nf(1)..c)∀r∈Q,f(r)=rf(1)Eneffet,f(q×pq)=qf(pq),d′autrepart,f(q×pq)=f(p)=pf(1),delasorte,onaf(r)=rf(1)..d)∀x∈R,f(x)=xf(1)..CommeQestdensedansR(demonstrationevidentedufaitqueRestuncorpsarchimedien),alors∀x∈R,f(x)=xf(1)(icionremarquememequ′ils′agitd′unededuction)...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com