Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 15567 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 11/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 11/Jun/17

ABCD & MNPQ,are squares.  show that:  a^2 +b^2 =c^2 +d^2

ABCD&MNPQ,aresquares.showthat:a2+b2=c2+d2

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 13/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 13/Jun/17

a^2 =s^2 +(p+n((√2)/2))^2 ,b^2 =q^2 +(r+n((√2)/2))^2   c^2 =p^2 +(q+n((√2)/2))^2 ,d^2 =r^2 +(s+n((√2)/2))^2   a^2 +b^2 =s^2 +q^2 +p^2 +r^2 +n^2 +2n(√2)(p+r)(i)  c^2 +d^2 =s^2 +q^2 +p^2 +r^2 +n^2 +2n(√2)(q+s)(ii)  q+s++n(√2)=m,p+r+n(√2)=m  ⇒p+r=q+s  (i)−(ii)⇒(a^2 +b^2 )−(c^2 +d^2 )=0  ⇒           a^2 +b^2 =c^2 +d^2         .■

a2=s2+(p+n22)2,b2=q2+(r+n22)2c2=p2+(q+n22)2,d2=r2+(s+n22)2a2+b2=s2+q2+p2+r2+n2+2n2(p+r)(i)c2+d2=s2+q2+p2+r2+n2+2n2(q+s)(ii)q+s++n2=m,p+r+n2=mp+r=q+s(i)(ii)(a2+b2)(c2+d2)=0a2+b2=c2+d2.

Answered by ajfour last updated on 12/Jun/17

Commented by ajfour last updated on 12/Jun/17

 let   scos θ=s_x ,  ssin θ=s_y     l is the side of biggest square  all components of lengths a, b,   c, d, and s are positive.    from figure above,       c_x =b_x +s_y    ;   c_y =a_y −s_y        d_x =a_x +s_y    ;   d_y =b_y −s_y     c^2 +d^2 =c_x ^2 +c_y ^2 +d_x ^2 +d_y ^2              =(b_x +s_y )^2 +(a_y −s_y )^2                +(a_x +s_y )^2 +(b_y −s_y )^2          = (a_x ^2 +a_y ^2 )+(b_x ^2 +b_y ^2 )+4s_y ^2            +2s_y [(a_x +b_x )−(a_y +b_y )]     Now  (a_x +b_x )=l−(s_x +s_y )    and     (a_y +b_y )=l−(s_x −s_y )  ⇒ (a_x +b_x )−(a_y +b_y )= −2s_y   continuing, we have       c^2 +d^2  = a^2 +b^2 +4s_y ^2                        +2s_y (−2s_y )  or     c^2 +d^2  = a^2 +b^2  .

letscosθ=sx,ssinθ=sylisthesideofbiggestsquareallcomponentsoflengthsa,b,c,d,andsarepositive.fromfigureabove,cx=bx+sy;cy=aysydx=ax+sy;dy=bysyc2+d2=cx2+cy2+dx2+dy2=(bx+sy)2+(aysy)2+(ax+sy)2+(bysy)2=(ax2+ay2)+(bx2+by2)+4sy2+2sy[(ax+bx)(ay+by)]Now(ax+bx)=l(sx+sy)and(ay+by)=l(sxsy)(ax+bx)(ay+by)=2sycontinuing,wehavec2+d2=a2+b2+4sy2+2sy(2sy)orc2+d2=a2+b2.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17

excellent! mr Ajcour.thank you very   much.

excellent!mrAjcour.thankyouverymuch.

Commented by ajfour last updated on 12/Jun/17

thank you sir, i shall yet look for   a shorter way..

thankyousir,ishallyetlookforashorterway..

Answered by ajfour last updated on 12/Jun/17

Commented by ajfour last updated on 12/Jun/17

l_x ^� +c^� =a^� +s_1 ^�           ...1(i)    l_y ^� +b^� =c^� +s_2 ^�      .....1(ii)  l_x ^� +b^� =d^� +s_1 ^�       ..... 1(iii)  l_y ^� +d^� =a^� +s_2 ^�       ..... 1(iv)       l_x ^� .l_y ^� =s_1 ^� .s_2 ^� =0    l_x ^� .s_2 ^� =−ls(sin θ),    l_y ^� .s_1 ^� =ls(sin θ)  subtracting the top left two eqns.               c^� −b^� =a^� −d^�   ⇒        c^� +d^� =a^� +b^�          So    (c^� +d^� ).(c^� +d^� )=(c^� +d^� ).(a^� +b^� )     c^2 +d^( 2) +2c^� .d^� =(c^� +d^� ).(a^� +b^� )  ...(2)  from (i):             c^� −a^� =s_1 ^� −l_x ^�    and from (iv)           d^� −a^� =s_2 ^� −l_y ^�   taking dot product,    (c^� −a^� ).(d^� −a^� )=−s_1 ^� .l_y ^� −s_2 ^� .l_x ^�          =−ls(sin θ)+ls(sin θ)=0   ..(3)   rearranging  (ii) and (iii):     c^� −b^� =l_y ^� −s_2 ^�      b^� −d^� =s_1 ^� −l_x ^�   dot product yields,    (c^� −b^� ).(b^� −d^� )=s_1 ^� .l_y ^� +s_2 ^� .l_x ^�        =ls(sin θ)−ls(sin θ) =0    ...(4)  subtracting (4) and (3):   c^� .d^� −c^� .a^� −a^� .d^� +a^2      −c^� .b^� +c^� .d^� +b^2 −b^� .d^�    =0     or    2c^� .d^� −(c^� +d^� ).(a^� +b^� )+a^2 +b^2 =0                                                        ....(5)   subtracting (5) from (2):      (c^2 +d^( 2) )−(a^2 +b^2 )=0                   c^2 +d^2 =a^2 +b^2   .

l¯x+c¯=a¯+s¯1...1(i)l¯y+b¯=c¯+s¯2.....1(ii)l¯x+b¯=d¯+s¯1.....1(iii)l¯y+d¯=a¯+s¯2.....1(iv)l¯x.l¯y=s¯1.s¯2=0l¯x.s¯2=ls(sinθ),l¯y.s¯1=ls(sinθ)subtractingthetoplefttwoeqns.c¯b¯=a¯d¯c¯+d¯=a¯+b¯So(c¯+d¯).(c¯+d¯)=(c¯+d¯).(a¯+b¯)c2+d2+2c¯.d¯=(c¯+d¯).(a¯+b¯)...(2)from(i):c¯a¯=s¯1l¯xandfrom(iv)d¯a¯=s¯2l¯ytakingdotproduct,(c¯a¯).(d¯a¯)=s¯1.l¯ys¯2.l¯x=ls(sinθ)+ls(sinθ)=0..(3)rearranging(ii)and(iii):c¯b¯=l¯ys¯2b¯d¯=s¯1l¯xdotproductyields,(c¯b¯).(b¯d¯)=s¯1.l¯y+s¯2.l¯x=ls(sinθ)ls(sinθ)=0...(4)subtracting(4)and(3):c¯.d¯c¯.a¯a¯.d¯+a2c¯.b¯+c¯.d¯+b2b¯.d¯=0or2c¯.d¯(c¯+d¯).(a¯+b¯)+a2+b2=0....(5)subtracting(5)from(2):(c2+d2)(a2+b2)=0c2+d2=a2+b2.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17

so nice dear mr Ajfour.this proof is  very beautiful. i love this.thanks.

sonicedearmrAjfour.thisproofisverybeautiful.ilovethis.thanks.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com