Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 15572 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17

circle :c tangent to semicircle AEB at:  points: E & D. AD=a=12,DB=b=5.  ....................................................  1)DE=x=?,AE=?  2)  show that:  ∡AED=45^• .

circle:ctangenttosemicircleAEBat:points:E&D.AD=a=12,DB=b=5.....................................................1)DE=x=?,AE=?2)showthat:AED=45.

Answered by mrW1 last updated on 12/Jun/17

R=radius of big circle  r=radius of small circle  R=((a+b)/2)    OD=a−R=((a−b)/2)  OC=OE−CE=R−r  OC^2 =OD^2 +DC^2   (R−r)^2 =(((a−b)/2))^2 +r^2   R(R−2r)=(((a−b)^2 )/4)  ⇒r=(1/2)[R−(((a−b)^2 )/(4R))]=((4R^2 −(a−b)^2 )/(8R))  =(((a+b)^2 −(a−b)^2 )/(4(a+b)))=((ab)/(a+b))    x^2 =2r^2 −2r^2 cos ∠DOE  =2r^2 +2r^2 cos ∠OCD  =2r^2 (1+((CD)/(OC)))=2r^2 (1+(r/(R−r)))  =2r^2 (1+(1/((R/r)−1)))  =2r^2 (1+(1/((((a+b)^2 )/(2ab))−1)))  =2(((ab)/(a+b)))^2 (1+((2ab)/((a+b)^2 −2ab)))  =2(((ab)/(a+b)))^2 ((((a+b)^2 )/(a^2 +b^2 )))  =((2(ab)^2 )/(a^2 +b^2 ))  ⇒x=ab(√(2/(a^2 +b^2 )))    AE^2 =y^2 =2R^2 −2R^2 cos ∠AOE  =2R^2 (1+cos ∠EOB)  =2R^2 (1+((OD)/(OC)))  =2R^2 (1+((a−b)/(2(R−r))))  R−r=((a+b)/2)−((ab)/(a+b))=(((a+b)^2 −2ab)/(2(a+b)))=((a^2 +b^2 )/(2(a+b)))  y^2 =2R^2 (1+((a^2 −b^2 )/(a^2 +b^2 )))=2R^2 ((2a^2 )/(a^2 +b^2 ))  =(a+b)^2 (a^2 /(a^2 +b^2 ))  AE=y=((a(a+b))/(√(a^2 +b^2 )))    x^2 +y^2 −2xycos ∠AED=AD^2 =a^2   ((2(ab)^2 )/(a^2 +b^2 ))+((a^2 (a+b)^2 )/(a^2 +b^2 ))−2(((√2)(ab)a(a+b))/(a^2 +b^2 ))cos ∠AED=a^2   2b^2 +(a+b)^2 −(a^2 +b^2 )=2(√2)b(a+b)cos ∠AED  2b(b+a)=2(√2)b(a+b)cos ∠AED  1=(√2)cos ∠AED  (1/(√2))=cos ∠AED  ⇒∠AED=(π/4)

R=radiusofbigcircler=radiusofsmallcircleR=a+b2OD=aR=ab2OC=OECE=RrOC2=OD2+DC2(Rr)2=(ab2)2+r2R(R2r)=(ab)24r=12[R(ab)24R]=4R2(ab)28R=(a+b)2(ab)24(a+b)=aba+bx2=2r22r2cosDOE=2r2+2r2cosOCD=2r2(1+CDOC)=2r2(1+rRr)=2r2(1+1Rr1)=2r2(1+1(a+b)22ab1)=2(aba+b)2(1+2ab(a+b)22ab)=2(aba+b)2((a+b)2a2+b2)=2(ab)2a2+b2x=ab2a2+b2AE2=y2=2R22R2cosAOE=2R2(1+cosEOB)=2R2(1+ODOC)=2R2(1+ab2(Rr))Rr=a+b2aba+b=(a+b)22ab2(a+b)=a2+b22(a+b)y2=2R2(1+a2b2a2+b2)=2R22a2a2+b2=(a+b)2a2a2+b2AE=y=a(a+b)a2+b2x2+y22xycosAED=AD2=a22(ab)2a2+b2+a2(a+b)2a2+b222(ab)a(a+b)a2+b2cosAED=a22b2+(a+b)2(a2+b2)=22b(a+b)cosAED2b(b+a)=22b(a+b)cosAED1=2cosAED12=cosAEDAED=π4

Commented by mrW1 last updated on 12/Jun/17

you are right sir, thanks. I have fixed.

youarerightsir,thanks.Ihavefixed.

Commented by mrW1 last updated on 12/Jun/17

you are welcome sir! thank you too!

youarewelcomesir!thankyoutoo!

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17

thank you dear mrW1.  x=((12×5)/(12+5))(√(2(1+((2×12×5)/(144−25)))))=  =((60)/(17))(√(4.02))=7.07  right answer for x: x=6.52

thankyoudearmrW1.x=12×512+52(1+2×12×514425)==60174.02=7.07rightanswerforx:x=6.52

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17

cos∡OCD=((CD)/(OC))=(r/(R−r))  ⇒x^2 =2r^2 (1+(r/(R−r)))=((2Rr^2 )/(R−r))⇒x=r(√((2R)/(R−r)))  r=((ab)/(a+b)),R=((a+b)/2)  R−r=((a+b)/2)−((ab)/(a+b))=((a^2 +b^2 )/(2(a+b)))  ⇒x=((ab)/(a+b))(√((a+b)/((a^2 +b^2 )/(2(a+b)))))=((ab(√2))/(√(a^2 +b^2 )))  y=((a(a+b))/(√(a^2 +b^2 )))

cosOCD=CDOC=rRrx2=2r2(1+rRr)=2Rr2Rrx=r2RRrr=aba+b,R=a+b2Rr=a+b2aba+b=a2+b22(a+b)x=aba+ba+ba2+b22(a+b)=ab2a2+b2y=a(a+b)a2+b2

Commented by mrW1 last updated on 12/Jun/17

you are right, thanks. I have fixed.

youareright,thanks.Ihavefixed.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17

thanks for you .your answer is very  beautiful.i learn many things from  your commenets and answers.  god bless you master.

thanksforyou.youranswerisverybeautiful.ilearnmanythingsfromyourcommenetsandanswers.godblessyoumaster.

Answered by ajfour last updated on 12/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17

thank you very much.it′s perfect!

thankyouverymuch.itsperfect!

Commented by ajfour last updated on 12/Jun/17

considering ΔCOD:  OD=(((a+b))/2)−b=((a−b)/2)  OE=R=(((a+b)/2))  and  CE=CD=r  OC=OE−CE=R−r  OD^2 =OC^2 −CD^2   ⇒ (((a−b)/2))^2 =(R−r)^2 −r^2    (((a−b)/2))^2 =R^2 −2rR    (((a−b)/2))^2 =(((a+b)/2))^2 =2rR   ⇒       2rR=ab                     r=((ab)/(a+b)) .   tan 2θ=((CD)/(OD))= (((((ab)/(a+b))))/((((a−b)/2)))) =((2ab)/(a^2 −b^2 ))    ((2tan θ)/(1−tan^2 θ))=((2(b/a))/(1−(b/a)^2 ))  ⇒                tan θ=(b/a)    with CF ⊥ DE   sin  ∠DCF=((DF)/(CD))= (((x/2))/r)    sin ((π/4)+θ)=(x/(2r))   (1/(√2))(sin θ+cos θ)=(x/(2r))    x=r(√2)((b/(√(a^2 +b^2 )))+(a/(√(a^2 +b^2 ))))    x=(((√2)ab)/((a+b)))(((a+b))/(√(a^2 +b^2 )))     x= (((√2)ab)/(√(a^2 +b^2 ))) .   y=2(AO)cos θ =2Rcos θ  as  R=(((a+b))/2) , we have     y=((a(a+b))/(√(a^2 +b^2 )))  and  x=(((√2)ab)/(√(a^2 +b^2 )))   for a=12 , b=5     y= ((204)/(13)) ≈15.7   and      x=((60(√2))/(13)) ≈6.526 .    ∠AED=∠AEO+∠CEF                   = θ+[(π/2)−((π/4)+θ)]                   = (π/4) .

consideringΔCOD:OD=(a+b)2b=ab2OE=R=(a+b2)andCE=CD=rOC=OECE=RrOD2=OC2CD2(ab2)2=(Rr)2r2(ab2)2=R22rR(ab2)2=(a+b2)2=2rR2rR=abr=aba+b.tan2θ=CDOD=(aba+b)(ab2)=2aba2b22tanθ1tan2θ=2(b/a)1(b/a)2tanθ=bawithCFDEsinDCF=DFCD=(x/2)rsin(π4+θ)=x2r12(sinθ+cosθ)=x2rx=r2(ba2+b2+aa2+b2)x=2ab(a+b)(a+b)a2+b2x=2aba2+b2.y=2(AO)cosθ=2RcosθasR=(a+b)2,wehavey=a(a+b)a2+b2andx=2aba2+b2fora=12,b=5y=2041315.7andx=602136.526.AED=AEO+CEF=θ+[π2(π4+θ)]=π4.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 12/Jun/17

hi dear mr Ajfour! i have your picture  but i can′t hear your sound! (ha)^3   where is your solution?i am waiting  for it!

hidearmrAjfour!ihaveyourpicturebuticanthearyoursound!(ha)3whereisyoursolution?iamwaitingforit!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com