All Questions Topic List
Matrices and Determinants Questions
Previous in All Question Next in All Question
Previous in Matrices and Determinants Next in Matrices and Determinants
Question Number 156248 by alcohol last updated on 09/Oct/21
Answered by physicstutes last updated on 09/Oct/21
eiθ=cosθ+isinθ.......(i)e−iθ=cosθ−isinθ.....(ii)equation(i)and(ii)arethepolarandindex(euler)formofageneralcomplexnumberwithmodulus1.(i)+(ii)⇒eiθ+e−iθ=2cosθsimilarlye2iθ+e−2iθ=2cos2θ⇒cos2θ=12(e2iθ+e−2iθ)also(i)−(ii)⇒eiθ−e−iθ=2isinθsimilarlye2iθ−e−2iθ=2isin2θ⇒sin2θ=12i(e2iθ−e−2iθ)HenceNowsin22θ=[12i(e2iθ−e−2iθ)]2=−14(e4iθ−2+e−4iθ)cos32θ=cos22θcosθ=[12(e2iθ+e−2iθ)]2[12(e2iθ+e−2iθ)]=18(e4iθ+2+e−4iθ)(e2iθ+e−2iθ)cos32θ=18(e6iθ+3e2iθ+3e−2iθ+e−6iθ)⇒sin22θcos32θ=−116(e4iθ−2+e−4iθ)(e6iθ+3e2iθ+3e−2iθ+e−6iθ)=−116(e10iθ+3e6iθ+3e2iθ+e−2iθ−2e6iθ−6e2iθ−6e−2iθ−2e−6iθ+e2iθ+3e2iθ+3e−6iθ+e−10iθ)=−116(e10iθ+10−10iθ+e6iθ+e−6iθ+e2iθ+e−2iθ)⇒16sin22θcos32θ=2cos2θ−cos6θ−cos10θasrequired.∫π3016sin22θcos32θdθ=∫π30(2cos2θ−cos6θ−cos10θ)dθ=[sin2θ−sin6θ6−sin10θ6]0π3=32−0−0⇒∫π3016sin22θcos32θdθ=32
Terms of Service
Privacy Policy
Contact: info@tinkutara.com