Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 156248 by alcohol last updated on 09/Oct/21

Answered by physicstutes last updated on 09/Oct/21

e^(iθ) = cos θ + i sinθ.......(i)  e^(−iθ)  = cos θ − i sin θ.....(ii)  equation (i) and (ii) are the polar and index (euler) form  of a general complex number with modulus 1.  (i) + (ii) ⇒ e^(iθ) +e^(−iθ)  = 2 cos θ    similarly   e^(2iθ) +e^(−2iθ)  = 2 cos 2θ  ⇒  determinant (((cos 2θ = (1/2)(e^(2iθ) +e^(−2iθ) ))))  also (i)−(ii) ⇒ e^(iθ) −e^(−iθ) = 2i sin θ  similarly  e^(2iθ) −e^(−2iθ) = 2i sin 2θ  ⇒  determinant (((sin 2θ = (1/(2i))(e^(2iθ) −e^(−2iθ) ))))   Hence  Now sin^2 2θ = [(1/(2i))(e^(2iθ) −e^(−2iθ) )]^2  = −(1/4)(e^(4iθ) −2 + e^(−4iθ) )  cos^3 2θ = cos^2 2θ cos θ = [(1/2)(e^(2iθ) +e^(−2iθ) )]^2 [(1/2)(e^(2iθ) +e^(−2iθ) )] = (1/8)(e^(4iθ) +2+e^(−4iθ) )(e^(2iθ) +e^(−2iθ) )  cos^3 2θ = (1/8)(e^(6iθ) +3e^(2iθ) +3e^(−2iθ) +e^(−6iθ) )  ⇒ sin^2 2θ cos^3 2θ = −(1/(16))(e^(4iθ) −2+e^(−4iθ) )(e^(6iθ) +3e^(2iθ) +3e^(−2iθ) +e^(−6iθ) )  = −(1/(16))(e^(10iθ) +3e^(6iθ) +3e^(2iθ) +e^(−2iθ) −2e^(6iθ) −6e^(2iθ) −6e^(−2iθ) −2e^(−6iθ) +e^(2iθ) +3e^(2iθ) +3e^(−6iθ) +e^(−10iθ) )  = −(1/(16))(e^(10iθ) +10^(−10iθ) +e^(6iθ) +e^(−6iθ) +e^(2iθ) +e^(−2iθ) )  ⇒ 16 sin^2 2θ cos^3 2θ = 2 cos 2θ− cos 6θ−cos 10 θ  as required.    ∫_0 ^(π/3) 16 sin^2 2θ cos^3 2θ dθ = ∫_0 ^(π/3) (2 cos 2θ − cos 6θ − cos 10 θ) dθ = [sin2θ −((sin 6θ)/6)−((sin 10θ)/6)]_0 ^(π/3)   = ((√3)/2)−0−0  ⇒  determinant (((∫_0 ^(π/3) 16 sin^2 2θ cos^3 2θ dθ = ((√3)/2))))

eiθ=cosθ+isinθ.......(i)eiθ=cosθisinθ.....(ii)equation(i)and(ii)arethepolarandindex(euler)formofageneralcomplexnumberwithmodulus1.(i)+(ii)eiθ+eiθ=2cosθsimilarlye2iθ+e2iθ=2cos2θcos2θ=12(e2iθ+e2iθ)also(i)(ii)eiθeiθ=2isinθsimilarlye2iθe2iθ=2isin2θsin2θ=12i(e2iθe2iθ)HenceNowsin22θ=[12i(e2iθe2iθ)]2=14(e4iθ2+e4iθ)cos32θ=cos22θcosθ=[12(e2iθ+e2iθ)]2[12(e2iθ+e2iθ)]=18(e4iθ+2+e4iθ)(e2iθ+e2iθ)cos32θ=18(e6iθ+3e2iθ+3e2iθ+e6iθ)sin22θcos32θ=116(e4iθ2+e4iθ)(e6iθ+3e2iθ+3e2iθ+e6iθ)=116(e10iθ+3e6iθ+3e2iθ+e2iθ2e6iθ6e2iθ6e2iθ2e6iθ+e2iθ+3e2iθ+3e6iθ+e10iθ)=116(e10iθ+1010iθ+e6iθ+e6iθ+e2iθ+e2iθ)16sin22θcos32θ=2cos2θcos6θcos10θasrequired.π3016sin22θcos32θdθ=π30(2cos2θcos6θcos10θ)dθ=[sin2θsin6θ6sin10θ6]0π3=3200π3016sin22θcos32θdθ=32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com