Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156841 by mnjuly1970 last updated on 16/Oct/21

Answered by gsk2684 last updated on 16/Oct/21

let C=cos (π/(2n+1)).cos ((2π)/(2n+1)).cos ((3π)/(2n+1))...cos (((n−1)π)/(2n+1)).cos ((nπ)/(2n+1))  let S=sin (π/(2n+1)).sin ((2π)/(2n+1)).sin ((3π)/(2n+1))...sin (((n−1)π)/(2n+1)).sin((nπ)/(2n+1))  2^n .S.C=(2sin (π/(2n+1))cos (π/(2n+1)))(2sin ((2π)/(2n+1))cos ((2π)/(2n+1)))(2sin ((3π)/(2n+1))cos ((3π)/(2n+1)))...(2sin (((n−1)π)/(2n+1))cos (((n−1)π)/(2n+1)))(2sin ((nπ)/(2n+1))cos ((nπ)/(2n+1)))               =sin ((2π)/(2n+1)).sin ((4π)/(2n+1)).sin ((6π)/(2n+1))...sin ((2(n−1)π)/(2n+1)).sin((2nπ)/(2n+1))                =sin ((2π)/(2n+1)).sin ((4π)/(2n+1)).sin ((6π)/(2n+1))...sin (π−((2π)/(2n+1))).sin(π−(π/(2n+1)))                =sin (π/(2n+1)).sin ((2π)/(2n+1)).sin ((3π)/(2n+1))...sin (((n−1)π)/(2n+1)).sin((nπ)/(2n+1))  2^n CS=S  C=(1/2^n )

letC=cosπ2n+1.cos2π2n+1.cos3π2n+1...cos(n1)π2n+1.cosnπ2n+1letS=sinπ2n+1.sin2π2n+1.sin3π2n+1...sin(n1)π2n+1.sinnπ2n+12n.S.C=(2sinπ2n+1cosπ2n+1)(2sin2π2n+1cos2π2n+1)(2sin3π2n+1cos3π2n+1)...(2sin(n1)π2n+1cos(n1)π2n+1)(2sinnπ2n+1cosnπ2n+1)=sin2π2n+1.sin4π2n+1.sin6π2n+1...sin2(n1)π2n+1.sin2nπ2n+1=sin2π2n+1.sin4π2n+1.sin6π2n+1...sin(π2π2n+1).sin(ππ2n+1)=sinπ2n+1.sin2π2n+1.sin3π2n+1...sin(n1)π2n+1.sinnπ2n+12nCS=SC=12n

Commented by mnjuly1970 last updated on 16/Oct/21

 very nice sir..grateful...

verynicesir..grateful...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com