Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156869 by cortano last updated on 16/Oct/21

Answered by gsk2684 last updated on 16/Oct/21

∫((sec x(sec x(sec x+tan x)))/((sec x+tan x)^6 ))dx  put sec x+tan x=t,sec x−tan x=(1/t)⇒  sec xtan x+sec^2 x=(dt/dx), 2sec x=t+(1/t)  ∫((t+(1/t))/(2t^6 ))dt=(1/2)∫(t^(−5) +t^(−7) )dt  =(1/2)((t^(−4) /(−4))+(t^(−6) /(−6)))+const  =−(1/(8(sec x+tan x)^4 ))−(1/(12(sec x+tan x)^6 ))+const

secx(secx(secx+tanx))(secx+tanx)6dxputsecx+tanx=t,secxtanx=1tsecxtanx+sec2x=dtdx,2secx=t+1tt+1t2t6dt=12(t5+t7)dt=12(t44+t66)+const=18(secx+tanx)4112(secx+tanx)6+const

Commented by cortano last updated on 16/Oct/21

yes

yes

Answered by puissant last updated on 16/Oct/21

Q=∫((sec^2 x)/((secx+tanx)^5 ))dx = ∫((sec^2 x)/(((1/(cosx))+((sinx)/(cosx)))^5 ))dx  =∫((cos^3 x)/((1+sinx)^5 ))dx = ∫(((1−sinx)(1+sinx)cosx)/((1+sinx)^5 ))dx  =∫((1−sinx)/((1+sinx)^4 ))cosdx ; u=sinx→du=cosxdx  ⇒ Q=∫((1−u)/((1+u)^4 ))du = ∫(1/((1+u)^4 ))du−∫((u+1−1)/((1+u)^4 ))du  = 2∫(1/((1+u)^4 ))du−∫(1/((1+u)^3 ))du  ⇒ Q=−(2/(3(1+u)^3 ))+(1/(2(1+u)^2 ))+C      ∴∵  Q=−(2/(3(1+sinx)^3 ))+(1/(2(1+sinx)^2 ))+C..                     .............Le puissant............

Q=sec2x(secx+tanx)5dx=sec2x(1cosx+sinxcosx)5dx=cos3x(1+sinx)5dx=(1sinx)(1+sinx)cosx(1+sinx)5dx=1sinx(1+sinx)4cosdx;u=sinxdu=cosxdxQ=1u(1+u)4du=1(1+u)4duu+11(1+u)4du=21(1+u)4du1(1+u)3duQ=23(1+u)3+12(1+u)2+C∴∵Q=23(1+sinx)3+12(1+sinx)2+C...............Lepuissant............

Commented by cortano last updated on 16/Oct/21

yes

yes

Terms of Service

Privacy Policy

Contact: info@tinkutara.com