Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157197 by MathSh last updated on 20/Oct/21

Answered by TheSupreme last updated on 20/Oct/21

I=(2/( (√π)))∫_0 ^z e^(−x^2 ) dx=0.4  I^2 =(4/π)∫_0 ^z e^(−x^2 −y^2 ) dxdy=0.16  polar  x=ρ cos(θ)  y= ρ sin(θ)  det(J)=ρ  0<θ<2π  0<ρ<z  I^2 =(4/π)∫_0 ^z ∫_0 ^(2π) ρe^(−ρ^2 ) dρdθ=8 ∫_0 ^z ρe^(−ρ^2 ) dρ=  =8[−(1/2)e^(−ρ^2 ) ]_0 ^z =  =4(1−e^(−z^2 ) )=0.16  e^(−z^2 ) =0.96  −z^2 =ln(0.96)  z=(√(−ln(0.96)))  in gen  z=(√(−ln(1−(A^2 /4))))

I=2π0zex2dx=0.4I2=4π0zex2y2dxdy=0.16polarx=ρcos(θ)y=ρsin(θ)det(J)=ρ0<θ<2π0<ρ<zI2=4π0z02πρeρ2dρdθ=80zρeρ2dρ==8[12eρ2]0z==4(1ez2)=0.16ez2=0.96z2=ln(0.96)z=ln(0.96)ingenz=ln(1A24)

Commented by MathSh last updated on 21/Oct/21

Thank you dear Ser

ThankyoudearSer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com