All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 157343 by mathocean1 last updated on 22/Oct/21
Answered by mindispower last updated on 23/Oct/21
X2−X−1=0⇒X∈{1+52,1−52}un=a(1+52)n+b(1−52)n(a,b){a+b=012(a+b)+52(a−b)=1⇒a=15,b=−15∅n=15((1+52)n−(1−52)n)(2)∅n+12=15((1+52)2n+2+(1−52)2n+2−2(−1)n+1)∅n.∅n+2=15((1+52)2n+2+(1−52)2n+2(−1)n(−(1+52)2−(1−52)2)=15((1+52)2+2n+(1−52)2n+2+(−1)n(−3))∅n+12−∅n∅n+1=(−1)n(3Σ)1−(∅n∅n+1)=(−1)n(∅n+1)2l=limn→∞(∅n+1∅n)1−1l=0⇒l=1(4),∑nk=0Cnk∅k=15(∑nk=0Cnk(1+52)k−5)∑k⩽nCnk(1−52)k)=15((1+1+52)n−(1+1−52)n)=15((6+254)n−(6−254)n)=15((1+52)2n−(1−52)2n)=∅2n(1+−52)2=6+−254(5)memeChoseQuelad1
Commented by mathocean1 last updated on 24/Oct/21
Thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com