Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 157343 by mathocean1 last updated on 22/Oct/21

Answered by mindispower last updated on 23/Oct/21

X^2 −X−1=0  ⇒X∈{((1+(√5))/2),((1−(√5))/2)}  u_n =a(((1+(√5))/2))^n +b(((1−(√5))/2))^n   (a,b) { ((a+b=0)),(((1/2)(a+b)+((√5)/2)(a−b)=1)) :}  ⇒a=(1/( (√5))),b=−(1/( (√5)))  ∅_n =(1/( (√5)))((((1+(√5))/2))^n −(((1−(√5))/2))^n )  (2)∅_(n+1) ^2 =(1/5)((((1+(√5))/2))^(2n+2) +(((1−(√5))/2))^(2n+2) −2(−1)^(n+1) )  ∅_n .∅_(n+2) =(1/5)((((1+(√5))/2))^(2n+2) +(((1−(√5))/2))^(2n+2) (−1)^n (−(((1+(√5))/2))^2 −(((1−(√5))/2))^2 )          =(1/5)((((1+(√5))/2))^(2+2n) +(((1−(√5))/2))^(2n+2) +(−1)^n (−3))  ∅_(n+1) ^2 −∅_n ∅_(n+1) =(−1)^n   (3Σ)1−((∅_n /∅_(n+1) ))=(((−1)^n )/((∅_(n+1) )^2 ))  l=lim_(n→∞) ((∅_(n+1) /∅_n ))  1−(1/l)=0⇒l=1  (4),Σ_(k=0) ^n C_n ^k ∅_k =(1/( (√5)))(Σ_(k=0) ^n C_n ^k (((1+(√5))/2))^k −5)Σ_(k≤n) C_n ^k (((1−(√5))/2))^(k))   =(1/( (√5)))((1+((1+(√5))/2))^n −(1+((1−(√5))/2))^n )  =(1/( (√5)))((((6+2(√5))/4))^n −(((6−2(√5))/4))^n )=(1/( (√5)))((((1+(√5))/2))^(2n) −(((1−(√5))/2))^(2n) )=∅_(2n)   (((1+_− (√5))/2))^2 =((6+_− 2(√5))/4)  (5) meme Chose Que la  d1

X2X1=0X{1+52,152}un=a(1+52)n+b(152)n(a,b){a+b=012(a+b)+52(ab)=1a=15,b=15n=15((1+52)n(152)n)(2)n+12=15((1+52)2n+2+(152)2n+22(1)n+1)n.n+2=15((1+52)2n+2+(152)2n+2(1)n((1+52)2(152)2)=15((1+52)2+2n+(152)2n+2+(1)n(3))n+12nn+1=(1)n(3Σ)1(nn+1)=(1)n(n+1)2l=limn(n+1n)11l=0l=1(4),nk=0Cnkk=15(nk=0Cnk(1+52)k5)knCnk(152)k)=15((1+1+52)n(1+152)n)=15((6+254)n(6254)n)=15((1+52)2n(152)2n)=2n(1+52)2=6+254(5)memeChoseQuelad1

Commented by mathocean1 last updated on 24/Oct/21

Thanks

Thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com