Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157695 by amin96 last updated on 26/Oct/21

Answered by Rasheed.Sindhi last updated on 26/Oct/21

x^(16) +(1/x^(16) )=(x^8 +(1/x^8 ))^2 −2=2207  x^8 +(1/x^8 )=(√(2209)) =47  x^8 +(1/x^8 )=(x^4 +(1/x^4 ))^2 −2=47  x^4 +(1/x^4 )=(√(49)) =7  x^4 +(1/x^4 )=(x^2 +(1/x^2 ))^2 −2=7  x^2 +(1/x^2 )=(√9) =3  x^2 +(1/x^2 )=(x+(1/x))^2 −2=3  x+(1/x)=(√5)  .......  .....

x16+1x16=(x8+1x8)22=2207x8+1x8=2209=47x8+1x8=(x4+1x4)22=47x4+1x4=49=7x4+1x4=(x2+1x2)22=7x2+1x2=9=3x2+1x2=(x+1x)22=3x+1x=5............

Commented by amin96 last updated on 26/Oct/21

  I know this sir . how will it be after ?

I know this sir . how will it be after ?

Commented by Rasheed.Sindhi last updated on 26/Oct/21

Very hard to continue further sir.I have done only easy part. :)

Answered by mr W last updated on 26/Oct/21

(x^8 +(1/x^8 ))^2 =2209=47^2   x^8 +(1/x^8 )=47  (x^4 +(1/x^4 ))^2 =49  x^4 +(1/x^4 )=7  (x^2 +(1/x^2 ))^2 =9  x^2 +(1/x^2 )=3  let t=x^2   t+(1/t)=3  t^2 −3t+1=0  p_n =t^n +(1/t^n )=x^(2n) +(1/x^(2n) )  p_(n+1) =3p_n −p_(n−1)   r^2 −3r+1=0  r_(1,2) =((3±(√5))/2)  p_n =r_1 ^n +r_2 ^n =(((3+(√5))/2))^n +(((3−(√5))/2))^n   a_n =(x^n +(1/x^n ))^2 =x^(2n) +(1/x^(2n) )+2=p_n +2  Σ_(n=1) ^(m=2021) a_n =Σ_(n=1) ^m (r_1 ^n +r_2 ^n +2)  =((r_1 (r_1 ^m −1))/(r_1 −1))+((r_2 (r_2 ^m −1))/(r_2 −1))+2m  =(((((3+(√5))/2))[(((3+(√5))/2))^m −1])/(((3+(√5))/2)−1))+(((((3−(√5))/2))[(((3−(√5))/2))^m −1])/(((3−(√5))/2)−1))+2m  =(((3+(√5))[(((3+(√5))/2))^m −1])/( (√5)+1))−(((3−(√5))[(((3−(√5))/2))^m −1])/( (√5)−1))+2m  =((((√5)+1)/2))(((3+(√5))/2))^m −((((√5)−1)/2))(((3−(√5))/2))^m +2m−1

(x8+1x8)2=2209=472x8+1x8=47(x4+1x4)2=49x4+1x4=7(x2+1x2)2=9x2+1x2=3lett=x2t+1t=3t23t+1=0pn=tn+1tn=x2n+1x2npn+1=3pnpn1r23r+1=0r1,2=3±52pn=r1n+r2n=(3+52)n+(352)nan=(xn+1xn)2=x2n+1x2n+2=pn+2m=2021n=1an=mn=1(r1n+r2n+2)=r1(r1m1)r11+r2(r2m1)r21+2m=(3+52)[(3+52)m1]3+521+(352)[(352)m1]3521+2m=(3+5)[(3+52)m1]5+1(35)[(352)m1]51+2m=(5+12)(3+52)m(512)(352)m+2m1

Answered by mindispower last updated on 26/Oct/21

U_n =x^n +(1/x^n ),u_0 =2,u_1 =(√5)  U_(n+1) =(√5)U_n −U_(n−1)   X^2 −(√5)X+1=0  ⇒X∈{(((√5)−1)/2),((1+(√5))/2)}  U_n =a(((1+(√5))/2))^n +b((((√5)−1)/2))^n   a+b=2,(1/2)(a−b)+((√5)/2)(a+b)=(√5)  a=b⇒a=b=1  U_n =(((1+(√5))/2))^n +((((√5)−1)/2))^n   we want   Σ_(n=1) ^(2207) (U_(2n) +2)  2.2207+Σ_(n=1) ^(2207) U_(2n) =(((1+(√5))/2))^2 .((1−(((1+(√5))/2))^(4414) )/(1−(((1+(√5))/2))^2 ))+((((√5)−1)/2))^2 .((1−((((√5)−1)/2))^(4414) )/(1−((((√5)−1)/2))^2 ))+4414

Un=xn+1xn,u0=2,u1=5Un+1=5UnUn1X25X+1=0X{512,1+52}Un=a(1+52)n+b(512)na+b=2,12(ab)+52(a+b)=5a=ba=b=1Un=(1+52)n+(512)nwewant2207n=1(U2n+2)2.2207+2207n=1U2n=(1+52)2.1(1+52)44141(1+52)2+(512)2.1(512)44141(512)2+4414

Answered by Raxreedoroid last updated on 28/Oct/21

  x^(16) +(1/x^(16) )=(x^8 +(1/x^8 ))^2 −2=2207  x^8 +(1/x^8 )=(√(2209)) =47  x^8 +(1/x^8 )=(x^4 +(1/x^4 ))^2 −2=47  x^4 +(1/x^4 )=(√(49)) =7  x^4 +(1/x^4 )=(x^2 +(1/x^2 ))^2 −2=7  x^2 +(1/x^2 )=(√9) =3  x^2 +(1/x^2 )=(x+(1/x))^2 −2=3  x+(1/x)=(√5)  x^2 −x(√5)+1=0  x=((±1+(√5))/2)=ϕ^(±1)   ϕ^n =ϕ^(n−2) +ϕ^(n−1)   ϕ^n =ϕ^(n+2) −ϕ^(n+1)   S=Σ_(n=1) ^(2021) (ϕ^n +ϕ^(−n) )^2   S=Σ_(n=1) ^(2021) (ϕ^(2n) +2+ϕ^(−2n) )  S=(((ϕ^2 )((ϕ^2 )^(2021) −1))/(ϕ^2 −1))+2(2021)+(((ϕ^(−2) )((ϕ^(−2) )^(2021) −1))/(ϕ^(−2) −1))  S=(((ϕ^2 )((ϕ)^(4042) −1))/ϕ)+4042−(((ϕ^(−2) )((ϕ)^(−4042) −1))/ϕ^(−1) )  S=ϕ^(4043) +4041−(ϕ^(−1) )^(4043)

x16+1x16=(x8+1x8)22=2207x8+1x8=2209=47x8+1x8=(x4+1x4)22=47x4+1x4=49=7x4+1x4=(x2+1x2)22=7x2+1x2=9=3x2+1x2=(x+1x)22=3x+1x=5x2x5+1=0x=±1+52=φ±1φn=φn2+φn1φn=φn+2φn+1S=2021n=1(φn+φn)2S=2021n=1(φ2n+2+φ2n)S=(φ2)((φ2)20211)φ21+2(2021)+(φ2)((φ2)20211)φ21S=(φ2)((φ)40421)φ+4042(φ2)((φ)40421)φ1S=φ4043+4041(φ1)4043

Terms of Service

Privacy Policy

Contact: info@tinkutara.com