Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 158272 by HongKing last updated on 01/Nov/21

Answered by qaz last updated on 04/Nov/21

Ω=4∫_0 ^∞ ((x^2 lnx)/(x^4 −x^2 +1))dx  =4∫_0 ^1 ((x^2 lnx)/(x^4 −x^2 +1))dx+4∫_1 ^∞ ((x^2 lnx)/(x^4 −x^2 +1))dx  =4∫_0 ^1 ((x^2 −1)/(x^4 −x^2 +1))lnxdx  =4∫_0 ^1 ((lnx)/((x+(1/x))^2 −3))d(x+(1/x))  =(2/( (√3)))ln((x+(1/x)−(√3))/(x+(1/x)+(√3)))∙lnx∣_0 ^1 −(2/( (√3)))∫_0 ^1 ln((x+(1/x)−(√3))/(x+(1/x)+(√3))) (dx/x)  =−(2/( (√3)))∫_0 ^1 (((ln(x^2 −(√3)x+1))/x)−((ln(x^2 +(√3)x+1))/x))dx  I(a)=∫_0 ^1 ((ln(x^2 +ax+1))/x)dx  =∫_0 ^a dy∫_0 ^1 (dx/(x^2 +yx+1))+∫_0 ^1 ((ln(x^2 +1))/x)dx  =∫_0 ^a (2/( (√(4−y^2 ))))arctan (√((2−y)/(2+y)))dy+Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 x^(2n−1) dx  =(π/2)arcsin (a/2)−(1/2)arcsin^2 (a/2)+(π^2 /(24))  Ω=−(2/( (√3)))(I(−(√3))−I((√3)))=((2π^2 )/(3(√3)))

Ω=40x2lnxx4x2+1dx=401x2lnxx4x2+1dx+41x2lnxx4x2+1dx=401x21x4x2+1lnxdx=401lnx(x+1x)23d(x+1x)=23lnx+1x3x+1x+3lnx012301lnx+1x3x+1x+3dxx=2301(ln(x23x+1)xln(x2+3x+1)x)dxI(a)=01ln(x2+ax+1)xdx=0ady01dxx2+yx+1+01ln(x2+1)xdx=0a24y2arctan2y2+ydy+n=1(1)n1n01x2n1dx=π2arcsina212arcsin2a2+π224Ω=23(I(3)I(3))=2π233

Commented by HongKing last updated on 09/Nov/21

cool my dear Ser thank you so much

coolmydearSerthankyousomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com