Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 158341 by aliibrahim1 last updated on 02/Nov/21

Answered by puissant last updated on 03/Nov/21

That is ε>0, let′s seek α>0 / ∀x∈R , 0<∣x−2∣<α ⇒ ∣x^2 −4∣<ε  for x∈R , ∣x^2 −4∣ = ∣x−2∣.∣x+2∣ we have ∣x−2∣<2 → 0<x+2<6  ⇒ ∣x^2 −4∣< 6∣x−2∣ ; ∣x^2 −4∣<ε → 6∣x−2∣<ε → ∣x−2∣<(ε/6)                                                take α=min(2 ; (ε/6))....■                                 .................Le puissant...............

Thatisε>0,letsseekα>0/xR,0<∣x2∣<αx24∣<εforxR,x24=x2.x+2wehavex2∣<20<x+2<6x24∣<6x2;x24∣<ε6x2∣<εx2∣<ε6takeα=min(2;ε6).....................Lepuissant...............

Commented by aliibrahim1 last updated on 04/Nov/21

thx sir

thxsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com