Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 158422 by ajfour last updated on 03/Nov/21

Commented by Tawa11 last updated on 04/Nov/21

Great sir

Greatsir

Answered by ajfour last updated on 05/Nov/21

Let right bottom angle      =(π/4)+2θ  (b/c)=((b/(sin ((π/8)+θ)))/((b/(sin ((π/8)+θ)))+b+c))  ⇒(c/b)=1+(1+(c/b))sin α   ⇒  (c/b)=((1+sin α)/(1−sin α))        ..(i)    similarly  (a/c)=((a/(sin ((π/8)−θ)))/(a/(sin ((π/8)−θ)+a+c)))   ⇒     (c/a)=((1+sin β)/(1−sin β))       ....(ii)         α+β=(π/4)     ....(I)  tan ((π/4)+2θ)=p        ...(iv)  c=a+b                          ...(v)  unknowns:      θ,p,c,a,b  ........................................  work:  from     (a/c)+(b/c)=1  ((1−sin α)/(1+sin α))+((1−sin β)/(1+sin β))=1  ⇒ 2−2sin αsin β           =1+sin α+sin β+sin αsin β  ⇒3sin αsin β=1−(sin α+sin β)  ⇒(3/2){cos (α−β)−(1/( (√2)))}=1−2sin ((π/8))cos (((α−β)/2))  −−−−−−−−−−−−−  let  α−β=2δ  (3/2)(2cos^2 δ−1−(1/( (√2))))            =1−2sin (π/8)cos δ            =1−2λcos δ  6cos^2 δ+4λcos δ−(5+(3/( (√2))))=0  cos δ=−(λ/3)+(√((λ^2 /9)+(((10+3(√2)))/(12))))  cos δ=−((√(2−(√2)))/6)+(√((2−(√2)+30+9(√2))/(36)))  6cos δ=(√(32+8(√2)))−(√(2−(√2)))  ⇒ α−β=2δ=2cos^(−1) (k/6)  and as  α+β=(π/4)   p=tan ((π/4)±2θ)=tan ((π/4)±2δ)  p=tan ((π/4)±2cos^(−1) (k/6))  −−−−−−−−−−−−−   p=tan {(π/4)±2cos^(−1) ((((√(32+8(√2)))−(√(2−(√2))))/6))}  −−−−−−−−−−−−−

Letrightbottomangle=π4+2θbc=bsin(π8+θ)bsin(π8+θ)+b+ccb=1+(1+cb)sinαcb=1+sinα1sinα..(i)similarlyac=asin(π8θ)asin(π8θ)+a+cca=1+sinβ1sinβ....(ii)α+β=π4....(I)tan(π4+2θ)=p...(iv)c=a+b...(v)unknowns:θ,p,c,a,b........................................work:fromac+bc=11sinα1+sinα+1sinβ1+sinβ=122sinαsinβ=1+sinα+sinβ+sinαsinβ3sinαsinβ=1(sinα+sinβ)32{cos(αβ)12}=12sin(π8)cos(αβ2)letαβ=2δ32(2cos2δ112)=12sinπ8cosδ=12λcosδ6cos2δ+4λcosδ(5+32)=0cosδ=λ3+λ29+(10+32)12cosδ=226+22+30+92366cosδ=32+8222αβ=2δ=2cos1k6andasα+β=π4p=tan(π4±2θ)=tan(π4±2δ)p=tan(π4±2cos1k6)p=tan{π4±2cos1(32+82226)}

Commented by mr W last updated on 05/Nov/21

perfect solution!

perfectsolution!

Answered by mr W last updated on 04/Nov/21

c+(c/(c−b))(√((c+b)^2 −(c−b)^2 ))=1  ⇒c+((2c(√(bc)))/(c−b))=1  ⇒c+((2c(√(bc)))/a)=1   ...(i)  c+(c/(c−a))(√((c+a)^2 −(c−a)^2 ))=p  ⇒c+((2c(√(ac)))/(c−a))=p  ⇒c+((2c(√(ac)))/b)=p   ...(ii)  (√(1^2 +p^2 ))=((2c(√(bc)))/a)+((2c(√(ac)))/b)  (√(1^2 +p^2 ))=1+p−2c   ...(iii)  from (iii):  c=((1+p−(√(1+p^2 )))/2)  from (i):  ((√b)/a)=((1−c)/(2c(√c)))  from (ii):  ((√a)/b)=((p−c)/(2c(√c)))  (1/( (√(ab))))=(((1−c)(p−c))/(4c^3 ))  ab=((16c^6 )/( (1−c)^2 (p−c)^2 ))  ((b/a))^(3/2) =((1−c)/(p−c))  (b/a)=(((1−c)/(p−c)))^(2/3)   b^2 =((16c^6 )/( (1−c)^2 (p−c)^2 ))(((1−c)/(p−c)))^(2/3)   b=((4c^3 )/( (1−u)(p−u)))(((1−c)/(p−c)))^(1/3)   a=((4c^3 )/( (1−c)(p−c)))(((p−c)/(1−c)))^(1/3)   a+b=((4c^3 )/( (1−4)(p−c)))[(((1−c)/(p−c)))^(1/3) +(((p−c)/(1−c)))^(1/3) ]  c=((4c^3 )/( (1−c)(p−c)))[(((1−c)/(p−c)))^(1/3) +(((p−c)/(1−c)))^(1/3) ]  ((4c^2 )/( (1−c)(p−c)))[(((1−c)/(p−c)))^(1/3) +(((p−c)/(1−c)))^(1/3) ]=1  or  (1−(2/(1+((√(1+p^2 ))/(p−1)))))^(1/3) +(1−(2/(1−((√(1+p^2 ))/(p−1)))))^(1/3) =((1/(1+p−(√(1+p^2 ))))−(1/2))((p/(1+p−(√(1+p^2 ))))−(1/2))  ⇒p≈0.2970 or 3.3665

c+ccb(c+b)2(cb)2=1c+2cbccb=1c+2cbca=1...(i)c+cca(c+a)2(ca)2=pc+2cacca=pc+2cacb=p...(ii)12+p2=2cbca+2cacb12+p2=1+p2c...(iii)from(iii):c=1+p1+p22from(i):ba=1c2ccfrom(ii):ab=pc2cc1ab=(1c)(pc)4c3ab=16c6(1c)2(pc)2(ba)32=1cpcba=(1cpc)23b2=16c6(1c)2(pc)2(1cpc)23b=4c3(1u)(pu)(1cpc)13a=4c3(1c)(pc)(pc1c)13a+b=4c3(14)(pc)[(1cpc)13+(pc1c)13]c=4c3(1c)(pc)[(1cpc)13+(pc1c)13]4c2(1c)(pc)[(1cpc)13+(pc1c)13]=1or(121+1+p2p1)13+(1211+p2p1)13=(11+p1+p212)(p1+p1+p212)p0.2970or3.3665

Commented by mr W last updated on 04/Nov/21

an other way:  α=(a/c), β=(b/c)  tan θ=(p/1)=p=((2tan (θ/2))/(1−tan^2  (θ/2)))  tan (θ/2)=(((√(1+p^2 ))−1)/p)  sin (θ/2)=((c−b)/(c+b))=((1−β)/(1+β))  β=(2/(1+sin (θ/2)))−1  β=(2/(1+(((√(1+p^2 ))−1)/( (√(2p^2 +2−2(√(1+p^2 ))))))))−1  α=(2/(1+sin ((π/4)−(θ/2))))−1  α=(2/(1+((p+1−(√(1+p^2 )))/( (√2)(√(2p^2 +2−2(√(1+p^2 ))))))))−1  α+β=1  (1/(1+((p+1−(√(1+p^2 )))/( 2(√(p^2 +1−(√(1+p^2 ))))))))+(1/(1+(((√(1+p^2 ))−1)/( (√2)(√(p^2 +1−(√(1+p^2 ))))))))=(3/2)

anotherway:α=ac,β=bctanθ=p1=p=2tanθ21tan2θ2tanθ2=1+p21psinθ2=cbc+b=1β1+ββ=21+sinθ21β=21+1+p212p2+221+p21α=21+sin(π4θ2)1α=21+p+11+p222p2+221+p21α+β=111+p+11+p22p2+11+p2+11+1+p212p2+11+p2=32

Commented by MJS_new last updated on 04/Nov/21

this last blue equation can be solved exactly  but the solution is not “nice”

thislastblueequationcanbesolvedexactlybutthesolutionisnotnice

Commented by mr W last updated on 04/Nov/21

wow! i didn′t expect that it can be solved  exactly.

wow!ididntexpectthatitcanbesolvedexactly.

Commented by MJS_new last updated on 04/Nov/21

I will type the exact solution as soon as I  have the time...

IwilltypetheexactsolutionassoonasIhavethetime...

Commented by MJS_new last updated on 05/Nov/21

let t=p+(√(p^2 +1)) ⇒ p=((t^2 −1)/(2t)); we′re looking  for p>0 ⇒ t>1  the blue equation now becomes  ((√(t^2 +1))/(1+(√(t^2 +1))))+((2(√(t^2 +1)))/( (√2)(t−1)+2(√(t^2 +1))))=(3/2)  this transforms to  ((√2)t+2+(√2))(√(t^2 +1))=2t^2 −3(√2)t+2+3(√2)  squaring & transforming  t^4 +2(1−4(√2))t^3 +(9+8(√2))t^2 −8(3+(√2))t+8(1+(√2))=0  let u=t+(1/2)−2(√2)  u^4 −(((81)/2)−20(√2))u^2 +8(17−15(√2))u−((3231)/(16))+127(√2)=0  we can get  (u^2 −αu−β)(u^2 +αu−γ)=0  with  α=2(√(6−2(√2)))  β=((33)/4)−6(√2)+(8−3(√2))(√(3−(√2)))  γ=((33)/4)−6(√2)−(8−3(√2))(√(3−(√2)))  the real solutions of this are  u=(α/2)±((√(α^2 +4β))/2)  t=u−(1/2)+2(√2)  p=((t^2 −1)/(2t))  I get for p_1 >1 [p_2 =p_1 ^(−1) ]  p_1 =−((2−7(√2))/8)−(((2−9(√2))(√(3−(√2))))/(16))+((8−2(√2)−(2−(√2))(√(3−(√2))))/(16))(√(57−32(√2)+4(8−3(√2))(√(3−(√2)))))  p_1 ≈3.36651284  p_2 ≈.297043275

lett=p+p2+1p=t212t;werelookingforp>0t>1theblueequationnowbecomest2+11+t2+1+2t2+12(t1)+2t2+1=32thistransformsto(2t+2+2)t2+1=2t232t+2+32squaring&transformingt4+2(142)t3+(9+82)t28(3+2)t+8(1+2)=0letu=t+1222u4(812202)u2+8(17152)u323116+1272=0wecanget(u2αuβ)(u2+αuγ)=0withα=2622β=33462+(832)32γ=33462(832)32therealsolutionsofthisareu=α2±α2+4β2t=u12+22p=t212tIgetforp1>1[p2=p11]p1=2728(292)3216+822(22)321657322+4(832)32p13.36651284p2.297043275

Commented by mr W last updated on 05/Nov/21

really magic! thanks alot!

reallymagic!thanksalot!

Commented by ajfour last updated on 05/Nov/21

thank you mrW sir n MjS sir!

thankyoumrWsirnMjSsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com