Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 158973 by mnjuly1970 last updated on 11/Nov/21

Answered by qaz last updated on 11/Nov/21

∫_0 ^(π/2) (x/((1+sin x)^2 ))dx  =(π/2)∫_0 ^(π/2) (dx/((1+cos x)^2 ))−∫_0 ^(π/2) (x/((1+cos x)^2 ))dx  =(π/4)∫_0 ^(π/4) (dx/(cos^4 x))−∫_0 ^(π/4) (x/(cos^4 x))dx  =(π/4)∫_0 ^(π/4) (1+tan^2 x)d(tan x)−∫_0 ^(π/4) xd(tan x+(1/3)tan^3 x)  =(π/4)∙[tan x+(1/3)tan^3 x]_0 ^(π/4) −x[tan x+(1/3)tan^3 x]_0 ^(π/4) +∫_0 ^(π/4) (tan x+(1/3)tan^3 x)dx  =(π/3)−(π/3)+∫_0 ^(π/4) tan x((2/3)+(1/3)sec^2 x)dx  =(1/3)ln2+(1/6)  ⇒K=(((1/3)ln2+(1/6))/((π/3)−(1/3)ln2−(1/6)))=((2ln2+1)/(2π−2ln2−1))

0π/2x(1+sinx)2dx=π20π/2dx(1+cosx)20π/2x(1+cosx)2dx=π40π/4dxcos4x0π/4xcos4xdx=π40π/4(1+tan2x)d(tanx)0π/4xd(tanx+13tan3x)=π4[tanx+13tan3x]0π/4x[tanx+13tan3x]0π/4+0π/4(tanx+13tan3x)dx=π3π3+0π/4tanx(23+13sec2x)dx=13ln2+16K=13ln2+16π313ln216=2ln2+12π2ln21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com