All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 158973 by mnjuly1970 last updated on 11/Nov/21
Answered by qaz last updated on 11/Nov/21
∫0π/2x(1+sinx)2dx=π2∫0π/2dx(1+cosx)2−∫0π/2x(1+cosx)2dx=π4∫0π/4dxcos4x−∫0π/4xcos4xdx=π4∫0π/4(1+tan2x)d(tanx)−∫0π/4xd(tanx+13tan3x)=π4⋅[tanx+13tan3x]0π/4−x[tanx+13tan3x]0π/4+∫0π/4(tanx+13tan3x)dx=π3−π3+∫0π/4tanx(23+13sec2x)dx=13ln2+16⇒K=13ln2+16π3−13ln2−16=2ln2+12π−2ln2−1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com