Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 159233 by mnjuly1970 last updated on 14/Nov/21

Answered by mindispower last updated on 16/Nov/21

A_(2n) =Σ_(k≥1) (1/((2k)^(2n) ))=(1/2^(2n) ).ζ(2n)  (((ζ(2n))/2^(2n) )/(2n(2n+1)))=−((ζ(2n))/(2^(2n) (2n+1)))+((ζ(2n))/(2^(2n) .(2n)))  Σ_(k≥1) ζ(2k)x^(2k) =−((πx)/2)cot(πx)+(1/2)  Σ_(k≥1) ((ζ(2k)x^(2k) )/(2k))=∫_0 ^x (−(π/2)cot(πx)+(1/(2x)))dx  =lim_(t→0) ∫_t ^x (−(π/2)cot(πx)+(1/(2x)))dx=  =lim_(t→0) ∫_t ^x (−(1/2)ln(sin(πx))+(1/2)ln(x))  (1/2)(ln((x/(sinπx)))−lim_(t→0) ln((t/(sin(πt))))  =ln((√(x/(sin(πx)))))+ln((√π))  Σ_(k≥1) ((ζ(2n))/(2^(2n) (2n)))=ln((√(1/2)))+ln((√π))  Σ_(n≥1) ((ζ(2n))/(2^(2n) (2n+1)))=2∫_0 ^(1/2) Σ_(n≥1) ζ(2n)x^(2n) dx  =2∫_0 ^(1/2) ((1/2)−(π/2)xcot(πx))dx=(1/2)−(1/π)∫_0 ^(π/2) ucot(u)du  =((1/2)+(1/π)∫_0 ^(π/2) ln(sin(u))du)=(1/2)+(1/π).−(π/2)ln(2)=(1/2)(1−ln(2))  S=(1/2)(ln(π)−ln(2))−(1/2)(1−ln(2))  =(1/2)(ln(π)−1)

A2n=k11(2k)2n=122n.ζ(2n)ζ(2n)22n2n(2n+1)=ζ(2n)22n(2n+1)+ζ(2n)22n.(2n)k1ζ(2k)x2k=πx2cot(πx)+12k1ζ(2k)x2k2k=0x(π2cot(πx)+12x)dx=limt0tx(π2cot(πx)+12x)dx==limt0tx(12ln(sin(πx))+12ln(x))12(ln(xsinπx)limt0ln(tsin(πt))=ln(xsin(πx))+ln(π)k1ζ(2n)22n(2n)=ln(12)+ln(π)n1ζ(2n)22n(2n+1)=2012n1ζ(2n)x2ndx=2012(12π2xcot(πx))dx=121π0π2ucot(u)du=(12+1π0π2ln(sin(u))du)=12+1π.π2ln(2)=12(1ln(2))S=12(ln(π)ln(2))12(1ln(2))=12(ln(π)1)

Commented by mnjuly1970 last updated on 15/Nov/21

very nice sir power...thx alot

verynicesirpower...thxalot

Commented by mindispower last updated on 15/Nov/21

withe pleasur sir

withepleasursir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com