All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 159233 by mnjuly1970 last updated on 14/Nov/21
Answered by mindispower last updated on 16/Nov/21
A2n=∑k⩾11(2k)2n=122n.ζ(2n)ζ(2n)22n2n(2n+1)=−ζ(2n)22n(2n+1)+ζ(2n)22n.(2n)∑k⩾1ζ(2k)x2k=−πx2cot(πx)+12∑k⩾1ζ(2k)x2k2k=∫0x(−π2cot(πx)+12x)dx=limt→0∫tx(−π2cot(πx)+12x)dx==limt→0∫tx(−12ln(sin(πx))+12ln(x))12(ln(xsinπx)−limt→0ln(tsin(πt))=ln(xsin(πx))+ln(π)∑k⩾1ζ(2n)22n(2n)=ln(12)+ln(π)∑n⩾1ζ(2n)22n(2n+1)=2∫012∑n⩾1ζ(2n)x2ndx=2∫012(12−π2xcot(πx))dx=12−1π∫0π2ucot(u)du=(12+1π∫0π2ln(sin(u))du)=12+1π.−π2ln(2)=12(1−ln(2))S=12(ln(π)−ln(2))−12(1−ln(2))=12(ln(π)−1)
Commented by mnjuly1970 last updated on 15/Nov/21
verynicesirpower...thxalot
Commented by mindispower last updated on 15/Nov/21
withepleasursir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com