Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 159911 by amin96 last updated on 22/Nov/21

Answered by mr W last updated on 22/Nov/21

Commented by mr W last updated on 22/Nov/21

assume ABCD is square with side  length a.  ED=a tan α  α=(π/6)−θ  AE=a(1−tan α)  sin (θ/2)=((r_1 −r_2 )/(r_1 +r_2 ))=((2r_1 )/(r_1 +r_2 ))−1  ⇒r_1 +r_2 =((2r_1 )/(1+sin (θ/2)))  r_1 +r_2 +(r_1 +r_2 )cos (θ/2)=a  (r_1 +r_2 )(1+cos (θ/2))=a  ((2r_1 )/(1+sin (θ/2)))(1+cos (θ/2))=a  ⇒(r_1 /a)=((1+sin (θ/2))/(2(1+cos (θ/2))))  AE=r_1 +(r_1 /(tan ((π/4)−(θ/2))))=a(1−tan α)  (r_1 /a)(1+(1/(tan ((π/4)−(θ/2)))))=1−tan ((π/6)−θ)  ((1+sin (θ/2))/(2(1+cos (θ/2))))(1+(1/(tan ((π/4)−(θ/2)))))=1−tan ((π/6)−θ)    (((1+sin (θ/2))cos (θ/2))/((1+cos (θ/2))(cos (θ/2)−sin (θ/2))))=1−tan ((π/6)−θ)  ⇒θ≈6.0796°  sin (θ/2)=(((r_1 /r_2 )−1)/((r_1 /r_2 )+1))  ⇒(r_1 /r_2 )=((1+sin (θ/2))/(1−sin (θ/2)))  ⇒(S_1 /S_2 )=((r_1 /r_2 ))^2 =(((1+sin (θ/2))/(1−sin (θ/2))))^2 ≈1.53

assumeABCDissquarewithsidelengtha.ED=atanαα=π6θAE=a(1tanα)sinθ2=r1r2r1+r2=2r1r1+r21r1+r2=2r11+sinθ2r1+r2+(r1+r2)cosθ2=a(r1+r2)(1+cosθ2)=a2r11+sinθ2(1+cosθ2)=ar1a=1+sinθ22(1+cosθ2)AE=r1+r1tan(π4θ2)=a(1tanα)r1a(1+1tan(π4θ2))=1tan(π6θ)1+sinθ22(1+cosθ2)(1+1tan(π4θ2))=1tan(π6θ)(1+sinθ2)cosθ2(1+cosθ2)(cosθ2sinθ2)=1tan(π6θ)θ6.0796°sinθ2=r1r21r1r2+1r1r2=1+sinθ21sinθ2S1S2=(r1r2)2=(1+sinθ21sinθ2)21.53

Commented by Tawa11 last updated on 22/Nov/21

Weldone sir

Weldonesir

Commented by mr W last updated on 22/Nov/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com