Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 160014 by mr W last updated on 23/Nov/21

Commented by mr W last updated on 23/Nov/21

Q158675

Q158675

Commented by mr W last updated on 24/Nov/21

exact solution =((118)/7)

exactsolution=1187

Answered by mr W last updated on 23/Nov/21

Commented by mr W last updated on 24/Nov/21

((BF)/(BA))=((FG)/(GA))=((FC)/(CA))  ((BF)/(16))=((FG)/p)=((FC)/(10))=k, say  ⇒BF=16k, FC=10k, FG=kp  ((16^2 k^2 +(1+k)^2 p^2 −16^2 )/(2×16k×(1+k)p))=−((10^2 k^2 +(1+k)^2 p^2 −10^2 )/(2×10k×(1+k)p))  (((1+k)^2 p^2 −16^2 (1−k^2 ))/8)=−(((1+k)^2 p^2 −10^2 (1−k^2 ))/5)  (((1+k)p^2 −16^2 (1−k))/8)=−(((1+k)p^2 −10^2 (1−k))/5)  5(1+k)p^2 −5×16^2 (1−k)+8(1+k)p^2 −8×10^2 (1−k)=0  13(1+k)p^2 =(5×16^2 +8×10^2 )(1−k)  ⇒p^2 =((160(1−k))/(1+k))  ((8^2 +p^2 −s^2 )/(2×8×p))=((16^2 +(1+k)^2 p^2 −16^2 k^2 )/(2×16×(1+k)p))  8^2 +p^2 −s^2 =(((1+k)p^2 +16^2 (1−k))/2)  s^2 =(((1−k)p^2 )/2)+64(2k−1)  s^2 =((80(1−k)^2 )/(1+k))+64(2k−1)  ⇒s=4(√((13k^2 −6k+1)/(1+k)))  ...(i)  ((7^2 +p^2 −t^2 )/(2×7×p))=((10^2 +(1+k)^2 p^2 −10^2 k^2 )/(2×10×(1+k)p))  ((7^2 +p^2 −t^2 )/7)=(((1+k)p^2 +10^2 (1−k))/(10))  t^2 =(((3−7k)p^2 )/(10))+70k−21  t^2 =((16(3−7k)(1−k))/(1+k))+70k−21  ⇒t=(√((182k^2 −111k+27)/(1+k)))   ...(ii)  ((8^2 +7^2 −(s+t)^2 )/(2×8×7))=((16^2 +10^2 −26^2 k^2 )/(2×16×10))  ((113−(s+t)^2 )/7)=((89−169k^2 )/5)e  113×5−5(s+t)^2 =7×89−7×169k^2   ⇒1183k^2 −5(s+t)^2 =58   ...(iii)  inserting (i) and (ii) into (iii), we get  k≈0.64835165 and k=1 (rejected)  ⇒?=BC=26k≈16.857143  ====================  exact solution:  5(s^2 +t^2 +2st)=1183k^2 −58  5(390k^2 −207k+43)+40(√((13k^2 −6k+1)(182k^2 −111k+27)))=(1183k^2 −58)(1+k)  40(√((13k^2 −6k+1)(182k^2 −111k+27)))=1183k^3 −767k^2 +977k−273  1600(13k^2 −6k+1)(182k^2 −111k+27)=(1183k^3 −767k^2 +977k−273)^2   (k−1)(k+1)(13k−3)(13k+3)(91k−59)^2 =0  k=±1 (rejected, since k<((16+10)/(26))=1)  k=±(3/(13)) (rejected, since k>((16−10)/(26))=(3/(13)))  k=((59)/(91)) ✓  ⇒?=BC=26k=((26×59)/(91))=((118)/7)≈16.857

BFBA=FGGA=FCCABF16=FGp=FC10=k,sayBF=16k,FC=10k,FG=kp162k2+(1+k)2p21622×16k×(1+k)p=102k2+(1+k)2p21022×10k×(1+k)p(1+k)2p2162(1k2)8=(1+k)2p2102(1k2)5(1+k)p2162(1k)8=(1+k)p2102(1k)55(1+k)p25×162(1k)+8(1+k)p28×102(1k)=013(1+k)p2=(5×162+8×102)(1k)p2=160(1k)1+k82+p2s22×8×p=162+(1+k)2p2162k22×16×(1+k)p82+p2s2=(1+k)p2+162(1k)2s2=(1k)p22+64(2k1)s2=80(1k)21+k+64(2k1)s=413k26k+11+k...(i)72+p2t22×7×p=102+(1+k)2p2102k22×10×(1+k)p72+p2t27=(1+k)p2+102(1k)10t2=(37k)p210+70k21t2=16(37k)(1k)1+k+70k21t=182k2111k+271+k...(ii)82+72(s+t)22×8×7=162+102262k22×16×10113(s+t)27=89169k25e113×55(s+t)2=7×897×169k21183k25(s+t)2=58...(iii)inserting(i)and(ii)into(iii),wegetk0.64835165andk=1(rejected)?=BC=26k16.857143====================exactsolution:5(s2+t2+2st)=1183k2585(390k2207k+43)+40(13k26k+1)(182k2111k+27)=(1183k258)(1+k)40(13k26k+1)(182k2111k+27)=1183k3767k2+977k2731600(13k26k+1)(182k2111k+27)=(1183k3767k2+977k273)2(k1)(k+1)(13k3)(13k+3)(91k59)2=0k=±1(rejected,sincek<16+1026=1)k=±313(rejected,sincek>161026=313)k=5991?=BC=26k=26×5991=118716.857

Commented by Tawa11 last updated on 23/Nov/21

Great sir

Greatsir

Commented by Tawa11 last updated on 23/Nov/21

God bless you sir. I appreciate.

Godblessyousir.Iappreciate.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com