Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 161322 by kapoorshah last updated on 16/Dec/21

Commented by cortano last updated on 16/Dec/21

sin (30°+10°+α)=b  (1/2)cos (10°+α)+(1/2)(√3) sin (10°+α)=b  cos (10°+α)+(√3) sin (10°+α)=2b  (√3) (√(1−cos^2 t)) = 2b−cos t ; t=10°+α  3−3cos^2 t =4b^2 −4bcos t+cos^2 t  4cos^2 t−4b cos t+4b^2 −3  cos t = ((4b ± (√(16b^2 −16(4b^2 −3))))/8)  cos t=((b±(√(3−3b^2 )))/2)

sin(30°+10°+α)=b12cos(10°+α)+123sin(10°+α)=bcos(10°+α)+3sin(10°+α)=2b31cos2t=2bcost;t=10°+α33cos2t=4b24bcost+cos2t4cos2t4bcost+4b23cost=4b±16b216(4b23)8cost=b±33b22

Commented by MJS_new last updated on 16/Dec/21

the calculation is right but for any given  angle α the answer is ((b−(√(3−3b^2 )))/2) xor ((b+(√(3−3b^2 )))/2)  and thus you must clearify your answer

thecalculationisrightbutforanygivenangleαtheanswerisb33b22xorb+33b22andthusyoumustclearifyyouranswer

Commented by cortano last updated on 16/Dec/21

it depend for value b

itdependforvalueb

Commented by MJS_new last updated on 17/Dec/21

this is what I think was missing  let 0°≤α<360°  0≤α<50°∨230°≤α<360° ⇒ cos (α+10°) =((b+(√(3(1−b^2 ))))/2)  50°≤α<230° ⇒  cos (α+10°) =((b−(√(3(1−b^2 ))))/2)

thisiswhatIthinkwasmissinglet0°α<360°0α<50°230°α<360°cos(α+10°)=b+3(1b2)250°α<230°cos(α+10°)=b3(1b2)2

Answered by 1549442205PVT last updated on 16/Dec/21

sin(40^0 +α)=sin[30^0 +(10^0 +α)]  =sin30^0 cos(10^0 +α)+cos30^0 sin(10^0 +α)  =(1/2)cos(10^0 +α)+((√3)/2)sin(10^0 +α)=b  we have the system of equations:   { ((x+(√3)y=2b)),((x^2 +y^2 =1)) :}with x=cos(10^0 +α),y=sin(10^0 +α)  ⇒(2b−(√3)y)^2 +y^2 =1⇔4y^2 −4b(√3)y+4b^2 −1=0  △′=12b^2 −16b^2 +4=4−4b^2 .Hence  y=((2b(√3)±2(√(1−b^2 )))/4).From that  x=cos(10^0 +α)=b−(√3)y=2b−((6b±2(√(3−3b^2 )))/4)  =((2b±2(√(3−3b^2 )))/4)=((b±(√(3−3b^2 )))/2)

sin(400+α)=sin[300+(100+α)]=sin300cos(100+α)+cos300sin(100+α)=12cos(100+α)+32sin(100+α)=bwehavethesystemofequations:{x+3y=2bx2+y2=1withx=cos(100+α),y=sin(100+α)(2b3y)2+y2=14y24b3y+4b21=0=12b216b2+4=44b2.Hencey=2b3±21b24.Fromthatx=cos(100+α)=b3y=2b6b±233b24=2b±233b24=b±33b22

Commented by 1549442205PVT last updated on 16/Dec/21

Thank you Sir,for sin (40^0 +α) exist  b must satisfy ∣b∣≤1

ThankyouSir,forsin(400+α)existbmustsatisfyb∣⩽1

Commented by MJS_new last updated on 16/Dec/21

also here, read my comment above

alsohere,readmycommentabove

Commented by mr W last updated on 16/Dec/21

you didn′t understand MJS sir.  say α=3°, sin (40°+3°)=sin 43°=b  cos (10°+3°)=cos 13° which can only  have one particular value, not two!  as you give with ((b±(√(3−3b^2 )))/2). i.e.  only + or −, not ±.

youdidntunderstandMJSsir.sayα=3°,sin(40°+3°)=sin43°=bcos(10°+3°)=cos13°whichcanonlyhaveoneparticularvalue,nottwo!asyougivewithb±33b22.i.e.only+or,not±.

Commented by cortano last updated on 17/Dec/21

how if α = 160° ?    cos (α+160°)= cos 170° <0

howifα=160°?cos(α+160°)=cos170°<0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com