Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 161742 by mr W last updated on 21/Dec/21

Commented by mr W last updated on 21/Dec/21

find the radii of the circles inside  the big quater circle.

findtheradiiofthecirclesinsidethebigquatercircle.

Answered by FongXD last updated on 22/Dec/21

 determinant (((Find the radius (r) of the small circle))):  • tan2α=(8/4)=2=((2tanα)/(1−tan^2 α)), but tanα=(r/(FE))  ⇔ ((2r(FE))/((FE)^2 −r^2 ))=2, ⇔ (FE)^2 −r(FE)−r^2 =0  ⇒ FE=r(((1+(√5))/2))  ▲ in the right triangle OFD:  • FD^2 =OD^2 −OF^2   ⇔ FD=(√((8−r)^2 −r^2 ))  ⇔ 4+FE=4+r(((1+(√5))/2))=(√(64−16r))  ⇔ 64+16r(1+(√5))+r^2 (6+2(√5))=256−64r  ⇔ (3+(√5))r^2 +8r(5+(√5))−96=0  ⇒ r=((−4(5+(√5))+(√(16(30+10(√5))+96(3+(√5)))))/(3+(√5)))  ⇒ r=((−4(5+(√5))+4(√(48+16(√5))))/(9−5))×(3−(√5))  ⇒ r=(5+(√5))((√5)−3)+4(3−(√5))(√(3+(√5)))  ⇒ r=2(√5)−10+(12−4(√5))(((√5)+1)/( (√2)))  ⇒ r=2(√5)−10+((8(√5)−8)/( (√2)))  therefore,  determinant (((r=4(√(10))+2(√5)−4(√2)−10)))   determinant (((Find the radius (R) of the big circle))):  ▲ in the right triangle O′DG:  • DG^2 =O′D^2 −O′R^2   ⇒ DG=(√((8−R)^2 −R^2 ))=4(√(4−R))  • O′H=CG=8−DG=8−4(√(4−R))  ▲ in the right triangle O′JE:  • O′E^2 =O′J^2 +JE^2   ⇔ O′E^2 =(4(√(4−R)))^2 +(4−R)^2   ⇒ O′E^2 =R^2 −24R+80  ▲ in the right triangle O′IE:  • EI^2 =O′E^2 −O′I^2   ⇒ EI=(√((R^2 −24R+80)−R^2 ))=(√(80−24R))  ▲ in the right triangle ABE:  • BE^2 =AB^2 +AE^2   ⇒ BE=(√(8^2 +4^2 ))=4(√5)  • IB=BE−EI=4(√5)−(√(80−24R))  ▲ in the right triangle O′BI and O′BH  • O′I^2 +IB^2 =O′H^2 +HB^2   ⇔ R^2 +(4(√5)−(√(80−24R)))^2 =(8−4(√(4−R)))^2 +(8−R)^2   ⇔ R^2 +(160−24R−16(√(100−30R)))=(128−16R−64(√(4−R)))+(R^2 −16R+64)  ⇔ R−4=2(√(100−30R))−8(√(4−R))  ⇔ R^2 −8R+16=656−184R−32(√(30R^2 −220R+400))  ⇔ R^2 +176R−640=−32(√(30R^2 −220R+400))  ⇔ R^4 +30976R^2 +409600+352R^3 −225280R−1280R^2 =30720R^2 −225280R+409600  ⇔ R^4 +352R^3 −1024R^2 =0  ⇔ R^2 +352R−1024=0  therefore,  determinant (((R=80(√5)−176)))

Findtheradius(r)ofthesmallcircle:tan2α=84=2=2tanα1tan2α,buttanα=rFE2r(FE)(FE)2r2=2,(FE)2r(FE)r2=0FE=r(1+52)intherighttriangleOFD:FD2=OD2OF2FD=(8r)2r24+FE=4+r(1+52)=6416r64+16r(1+5)+r2(6+25)=25664r(3+5)r2+8r(5+5)96=0r=4(5+5)+16(30+105)+96(3+5)3+5r=4(5+5)+448+16595×(35)r=(5+5)(53)+4(35)3+5r=2510+(1245)5+12r=2510+8582therefore,r=410+254210Findtheradius(R)ofthebigcircle:intherighttriangleODG:DG2=OD2OR2DG=(8R)2R2=44ROH=CG=8DG=844RintherighttriangleOJE:OE2=OJ2+JE2OE2=(44R)2+(4R)2OE2=R224R+80intherighttriangleOIE:EI2=OE2OI2EI=(R224R+80)R2=8024RintherighttriangleABE:BE2=AB2+AE2BE=82+42=45IB=BEEI=458024RintherighttriangleOBIandOBHOI2+IB2=OH2+HB2R2+(458024R)2=(844R)2+(8R)2R2+(16024R1610030R)=(12816R644R)+(R216R+64)R4=210030R84RR28R+16=656184R3230R2220R+400R2+176R640=3230R2220R+400R4+30976R2+409600+352R3225280R1280R2=30720R2225280R+409600R4+352R31024R2=0R2+352R1024=0therefore,R=805176

Commented by Tawa11 last updated on 22/Dec/21

Great sir

Greatsir

Commented by mr W last updated on 27/Dec/21

all correct! thanks!

allcorrect!thanks!

Answered by FongXD last updated on 22/Dec/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com