Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 161773 by smallEinstein last updated on 22/Dec/21

Commented by Tawa11 last updated on 22/Dec/21

Sir einstein, please what is the name of this app?

Sireinstein,pleasewhatisthenameofthisapp?

Answered by Ar Brandon last updated on 22/Dec/21

I=∫_0 ^∞ x^2 e^(−2x) sin(2x)lnxdx=(∂/∂α)∣_(α=2) ∫_0 ^∞ x^α e^(−2x) sin(2x)dx     =(∂/∂α)∣_(α=2) (1/2^(α+1) )∫_0 ^∞ t^α e^(−t) sin(t)dt=(∂/∂α)∣_(α=2) (1/2^(α+1) )∫_0 ^∞ t^α e^(−t) (((e^(it) −e^(−it) )/(2i)))dt     =(∂/∂α)∣_(α=2) (i/2^(α+2) )∫_0 ^∞ t^α (e^(−(1+i)t) −e^(−(1−i)t) )dt     =(∂/∂α)∣_(α=2) (i/2^(α+2) )[∫_0 ^∞ t^α e^(−(1+i)t) dt−∫_0 ^∞ t^α e^(−(1−i)t) dt]     =(∂/∂α)∣_(α=2) (i/2^(α+2) )[(1/((1+i)^(α+1) ))∫_0 ^∞ u^α e^(−u) du−(1/((1−i)^(α+1) ))∫_0 ^∞ v^α e^(−v) dv     =(∂/∂α)∣_(α=2) (i/2^(α+2) )[((Γ(α+1))/((1+i)^(α+1) ))−((Γ(α+1))/((1−i)^(α+1) ))]=(i/2)∙(∂/∂α)∣_(α=2) [(1/((2+2i)^(α+1) ))−(1/((2−2i)^(α+1) ))]Γ(α+1)     =(i/2)∙∣_(α=2) ((1/((2+2i)^(α+1) ))−(1/((2−2i)^(α+1) )))Γ′(α+1)+(((ln(2−2i))/((2−2i)^(α+1) ))−((ln(2+2i))/((2+2i)^(α+1) )))Γ(α+1)     =(i/2)[((1/((2+2i)^3 ))−(1/((2−2i)^3 )))Γ′(3)+(((ln(2−2i))/((2−2i)^3 ))−((ln(2+2i))/((2+2i)^3 )))Γ(3)     =(i/2)[(((8e^(−(3/4)iπ) −8e^((3/4)iπ) )/(512)))Γ(3)ψ(3)+(((8e^((3/4)iπ) ln2e^(−(π/4)i) −8e^(−(3/4)iπ) ln2e^((π/4)i) )/(512)))Γ(3)]     =(i/(64))(−2isin(((3π)/4)))((3/2)−γ)+(i/(64))(e^((3/4)iπ) (ln2−(π/4)i)−e^(−(3/4)iπ) (ln2+(π/4)i))     =((√2)/(64))((3/2)−γ)+(i/(64))((e^((3/4)iπ) −e^(−(3/4)iπ) )ln2−(π/4)(e^((5/4)iπ) +e^(−(1/4)iπ) ))     =((√2)/(64))((3/2)−γ)−(1/(32))sin(((3π)/4))ln2+(π/(256))i(2isin((π/4)))     =((√2)/(64))((3/2)−γ)−((√2)/(64))ln2−((π(√2))/(256))=−(π/( 128(√2)))−(1/(32(√2)))γ−(1/(32(√2)))ln2+(3/( 64(√2)))  Still checking for typos

I=0x2e2xsin(2x)lnxdx=αα=20xαe2xsin(2x)dx=αα=212α+10tαetsin(t)dt=αα=212α+10tαet(eiteit2i)dt=αα=2i2α+20tα(e(1+i)te(1i)t)dt=αα=2i2α+2[0tαe(1+i)tdt0tαe(1i)tdt]=αα=2i2α+2[1(1+i)α+10uαeudu1(1i)α+10vαevdv=αα=2i2α+2[Γ(α+1)(1+i)α+1Γ(α+1)(1i)α+1]=i2αα=2[1(2+2i)α+11(22i)α+1]Γ(α+1)=i2α=2(1(2+2i)α+11(22i)α+1)Γ(α+1)+(ln(22i)(22i)α+1ln(2+2i)(2+2i)α+1)Γ(α+1)=i2[(1(2+2i)31(22i)3)Γ(3)+(ln(22i)(22i)3ln(2+2i)(2+2i)3)Γ(3)=i2[(8e34iπ8e34iπ512)Γ(3)ψ(3)+(8e34iπln2eπ4i8e34iπln2eπ4i512)Γ(3)]=i64(2isin(3π4))(32γ)+i64(e34iπ(ln2π4i)e34iπ(ln2+π4i))=264(32γ)+i64((e34iπe34iπ)ln2π4(e54iπ+e14iπ))=264(32γ)132sin(3π4)ln2+π256i(2isin(π4))=264(32γ)264ln2π2256=π12821322γ1322ln2+3642Stillcheckingfortypos

Answered by Lordose last updated on 22/Dec/21

  I = ∫_0 ^( ∞) x^2 e^(−2x) sin(2x)ln(x)dx  I = (∂/∂a)∣_(a=2) ∫_0 ^( ∞) x^a e^(−2x) sin(2x)dx  I =^(x=(x/2)) (∂/∂a)∣_(a=2) (1/2^(a+1) )∫_0 ^( ∞) x^a e^(−x) sin(x)dx  I = Im(∂/∂a)∣_(a=2) (1/2^(a+1) )∫_0 ^( ∞) x^a e^(−x(1−i)) dx  I =^(x=x(1−i))  Im(∂/∂a)∣_(a=2) (1/(2^(a+1) (1−i)^(a+1) ))∫_0 ^( ∞) x^(a+1−1) e^(−x) dx  I = Im(∂/∂a)∣_(a=2) ((𝚪(a+1))/(2^(a+1) (1−i)^(a+1) ))  I = Im∣((𝛙(a+1)𝚪(a+1))/(2^(a+1) (1−i)^(a+1) )) − ((𝚪(a+1)ln(2)+𝚪(a+1)ln(1−i))/(2^(a+1) (1−i)^(a+1) ))∣_(a=2)   I = Im(((𝛙(3)𝚪(3))/(2^3 (1−i)^3 )) − ((𝚪(3)ln(2)+𝚪(3)ln(1−i))/(2^3 (1−i)^3 )))  I = Im((1/(64))(4𝛄+𝛑−2(3+ln(8))+i(6−4𝛄−𝛑−ln(64))))  I = (1/(64))(6−4𝛄 − 𝛑 − 6ln(2))

I=0x2e2xsin(2x)ln(x)dxI=aa=20xae2xsin(2x)dxI=x=x2aa=212a+10xaexsin(x)dxI=Imaa=212a+10xaex(1i)dxI=x=x(1i)Imaa=212a+1(1i)a+10xa+11exdxI=Imaa=2Γ(a+1)2a+1(1i)a+1I=Imψ(a+1)Γ(a+1)2a+1(1i)a+1Γ(a+1)ln(2)+Γ(a+1)ln(1i)2a+1(1i)a+1a=2I=Im(ψ(3)Γ(3)23(1i)3Γ(3)ln(2)+Γ(3)ln(1i)23(1i)3)I=Im(164(4γ+π2(3+ln(8))+i(64γπln(64))))I=164(64γπ6ln(2))

Commented by Ar Brandon last updated on 22/Dec/21

Nice

Nice

Answered by mathmax by abdo last updated on 23/Dec/21

f(a)=∫_0 ^∞   x^(a+2) e^(−x−2) sin(2x)dx  f(a)=Im(∫_0 ^∞   x^(a+2) e^(−x−2+2ix) dx)  and ∫_0 ^∞   x^(a+2) e^(−2+(2i−1)x) dx=_((2i−1)x=−t)   ∫_0 ^∞   (((−t)/(2i−1)))^(a+2) e^(−2−t)  ((−dt)/((2i−1)))  =e^(−2) ((1/(2i−1)))^(a+3) (−1)^(a+2) ∫_0 ^∞    (t)^(a+2) e^(−t) dt  =((e^(−2) (−1)^a )/((2i−1)^(a+3) ))×Γ(a+3)  f^′ (a)=∫_0 ^∞ x^2 ( e^(alogx) )^′  e^(−x−2) sin(2x)dx  =∫_0 ^∞ x^2 logx x^a  e^(−x−2) sin(2x)dx  ⇒f^′ (0)=∫_0 ^∞  x^2  e^(−x−2) sin(2x)logx dx  f(a)=(e^(−2) /((2i−1)^3 ))(−(1/(2i−1)))^a .Γ(a+3)  =(e^(−2) /(((√5)e^(−iarctan(2)) 3))(−(1/( (√5)e^(−iarctan2) )))^a .Γ(a+3)  =(−1)^a  e^(−2) ((1/( (√5)e^(−iarctan2) )))^a .Γ(a+3)  =e^(iπa)  e^(−2)  5^(a/2)  e^(iaarctan2 ) .Γ(a+3)  rest to calculate f^′ (0)....be continued...

f(a)=0xa+2ex2sin(2x)dxf(a)=Im(0xa+2ex2+2ixdx)and0xa+2e2+(2i1)xdx=(2i1)x=t0(t2i1)a+2e2tdt(2i1)=e2(12i1)a+3(1)a+20(t)a+2etdt=e2(1)a(2i1)a+3×Γ(a+3)f(a)=0x2(ealogx)ex2sin(2x)dx=0x2logxxaex2sin(2x)dxf(0)=0x2ex2sin(2x)logxdxf(a)=e2(2i1)3(12i1)a.Γ(a+3)=e2(5eiarctan(2)3(15eiarctan2)a.Γ(a+3)=(1)ae2(15eiarctan2)a.Γ(a+3)=eiπae25a2eiaarctan2.Γ(a+3)resttocalculatef(0)....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com