Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 161815 by HongKing last updated on 22/Dec/21

Answered by Lordose last updated on 23/Dec/21

Ω(x) = Γ((x/2))Γ(1−(x/2))Γ((x/2)+(1/2))Γ(1−((x/2)+(1/2)))sin(πx)  Ω(x) = 𝛑csc(((𝛑x)/2))∙𝛑csc(((𝛑(1+x))/2))sin(πx)  Ω(x) = 2𝛑^2   x^2  − ((4x)/(Ω(x))) + (1/𝛑^4 ) = 0  x^2  − 2((1/𝛑^2 ))x + ((1/π^2 ))^2 = 0  (x − (1/𝛑^2 ))^2  = 0  x = (1/𝛑^2 )  ∅sE

Ω(x)=Γ(x2)Γ(1x2)Γ(x2+12)Γ(1(x2+12))sin(πx)Ω(x)=πcsc(πx2)πcsc(π(1+x)2)sin(πx)Ω(x)=2π2x24xΩ(x)+1π4=0x22(1π2)x+(1π2)2=0(x1π2)2=0x=1π2sE

Terms of Service

Privacy Policy

Contact: info@tinkutara.com