Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 161912 by mr W last updated on 24/Dec/21

Commented by mr W last updated on 24/Dec/21

Commented by mr W last updated on 24/Dec/21

it is to find a triangle whose sides  tangent the three circles with radii  p, q, r respectively.

itistofindatrianglewhosesidestangentthethreecircleswithradiip,q,rrespectively.

Commented by mr W last updated on 24/Dec/21

if the distances from the orthocenter  of a triangle to its sides are p, q, r  respectively, find the side lengthes  of the triangle.

ifthedistancesfromtheorthocenterofatriangletoitssidesarep,q,rrespectively,findthesidelengthesofthetriangle.

Commented by henderson last updated on 24/Dec/21

very interesting...  i want to know it !

veryinteresting...iwanttoknowit!

Commented by mr W last updated on 25/Dec/21

Commented by mr W last updated on 25/Dec/21

generally we can find two triangles  under the given condition.  red triangle with orthocenter inside  blue triangle with orthocenter outside

generallywecanfindtwotrianglesunderthegivencondition.redtrianglewithorthocenterinsidebluetrianglewithorthocenteroutside

Answered by mr W last updated on 25/Dec/21

Commented by mr W last updated on 26/Dec/21

(p/v)=(q/u) ⇒pu=qv  (p/w)=(r/u) ⇒pu=rw  ⇒ determinant (((pu=qv=rw)))=(1/k), say  ⇒u=(1/(pk)), v=(1/(qk)), w=(1/(rk))    say the area of triangle ABC is Δ  and the side lengthes are a, b, c.  (1/2)a(p+u)=(1/2)b(q+v)=(1/2)c(r+w)=Δ  (1/2)(au+bv+cw)=2Δ  (1/2)(((2Δu)/(p+u))+((2Δv)/(q+v))+((2Δw)/(r+w)))=2Δ  ⇒ determinant ((((u/(p+u))+(v/(q+v))+(w/(r+w))=2)))  (1/((p/u)+1))+(1/((q/v)+1))+(1/((r/w)+1))=2  (1/(p^2 k+1))+(1/(q^2 k+1))+(1/(r^2 k+1))=2  (p^2 k+1)(q^2 k+1)+(q^2 k+1)(r^2 k+1)+(r^2 k+1)(p^2 k+1)=2(p^2 k+1)(q^2 k+1)(r^2 k+1)  (p^2 q^2 +q^2 r^2 +r^2 p^2 )k^2 +2(p^2 +q^2 +r^2 )k+3=2p^2 q^2 r^2 k^3 +2(p^2 q^2 +q^2 r^2 +r^2 p^2 )k^2 +2(p^2 +q^2 +r^2 )k+2  2p^2 q^2 r^2 k^3 +(p^2 q^2 +q^2 r^2 +r^2 p^2 )k^2 −1=0   determinant ((((1/k^3 )−(p^2 q^2 +q^2 r^2 +r^2 p^2 ) (1/k)−2(pqr)^2 =0)))  (pqr)^4 −(((p^2 q^2 +q^2 r^2 +r^2 p^2 )/3))^3 ≤0 ⇒three real roots  (1/k_n )=2(√((p^2 q^2 +q^2 r^2 +r^2 p^2 )/3)) sin {((2nπ)/3)−(1/3) sin^(−1) [(pqr)^2 ((3/(p^2 q^2 +q^2 r^2 +r^2 p^2 )))^(3/2) ]} (n=0,1,2)    generally two (i.e. n=1,2) of the three   roots are suitable:   determinant ((((1/k_1 )=2(√((p^2 q^2 +q^2 r^2 +r^2 p^2 )/3)) sin {(π/3)+(1/3) sin^(−1) [(pqr)^2 ((3/(p^2 q^2 +q^2 r^2 +r^2 p^2 )))^(3/2) ]})),(((1/k_2 )=−2(√((p^2 q^2 +q^2 r^2 +r^2 p^2 )/3)) sin {(π/3)−(1/3) sin^(−1) [(pqr)^2 ((3/(p^2 q^2 +q^2 r^2 +r^2 p^2 )))^(3/2) ]})))  the positive value is for the case that  the orthocenter lies inside the triangle  and the negative value for the case   that it lies outside the triangle.    with k we get  𝚫=(1/( (√(((1/(p+(1/(pk))))+(1/(q+(1/(qk))))+(1/(r+(1/(rk)))))(−(1/(p+(1/(pk))))+(1/(q+(1/(qk))))+(1/(r+(1/(rk)))))((1/(p+(1/(pk))))−(1/(q+(1/(qk))))+(1/(r+(1/(rk)))))((1/(p+(1/(pk))))+(1/(q+(1/(qk))))−(1/(r+(1/(rk)))))))))  a=((2𝚫)/(p+(1/(pk)))), b=((2𝚫)/(q+(1/(qk)))), c=((2𝚫)/(r+(1/(rk))))    example: p=10, q=6, r=4  a≈28.522248 or 15.173152  b≈26.202978 or 12.655577  c≈20.945175 or 4.829686

pv=qupu=qvpw=rupu=rwpu=qv=rw=1k,sayu=1pk,v=1qk,w=1rksaytheareaoftriangleABCisΔandthesidelengthesarea,b,c.12a(p+u)=12b(q+v)=12c(r+w)=Δ12(au+bv+cw)=2Δ12(2Δup+u+2Δvq+v+2Δwr+w)=2Δup+u+vq+v+wr+w=21pu+1+1qv+1+1rw+1=21p2k+1+1q2k+1+1r2k+1=2(p2k+1)(q2k+1)+(q2k+1)(r2k+1)+(r2k+1)(p2k+1)=2(p2k+1)(q2k+1)(r2k+1)(p2q2+q2r2+r2p2)k2+2(p2+q2+r2)k+3=2p2q2r2k3+2(p2q2+q2r2+r2p2)k2+2(p2+q2+r2)k+22p2q2r2k3+(p2q2+q2r2+r2p2)k21=01k3(p2q2+q2r2+r2p2)1k2(pqr)2=0(pqr)4(p2q2+q2r2+r2p23)30threerealroots1kn=2p2q2+q2r2+r2p23sin{2nπ313sin1[(pqr)2(3p2q2+q2r2+r2p2)32]}(n=0,1,2)generallytwo(i.e.n=1,2)ofthethreerootsaresuitable:1k1=2p2q2+q2r2+r2p23sin{π3+13sin1[(pqr)2(3p2q2+q2r2+r2p2)32]}1k2=2p2q2+q2r2+r2p23sin{π313sin1[(pqr)2(3p2q2+q2r2+r2p2)32]}thepositivevalueisforthecasethattheorthocenterliesinsidethetriangleandthenegativevalueforthecasethatitliesoutsidethetriangle.withkwegetΔ=1(1p+1pk+1q+1qk+1r+1rk)(1p+1pk+1q+1qk+1r+1rk)(1p+1pk1q+1qk+1r+1rk)(1p+1pk+1q+1qk1r+1rk)a=2Δp+1pk,b=2Δq+1qk,c=2Δr+1rkexample:p=10,q=6,r=4a28.522248or15.173152b26.202978or12.655577c20.945175or4.829686

Commented by mr W last updated on 25/Dec/21

Commented by mr W last updated on 25/Dec/21

Commented by mr W last updated on 25/Dec/21

Commented by Ar Brandon last updated on 25/Dec/21

What′s all this, Sir    🙁☹️

Whatsallthis,Sir🙁☹️

Commented by mr W last updated on 25/Dec/21

how to find the triangle if you only  know the distances from its   orthocenter to its three sides.

howtofindthetriangleifyouonlyknowthedistancesfromitsorthocentertoitsthreesides.

Commented by Ar Brandon last updated on 25/Dec/21

  😭

😭

Commented by Tawa11 last updated on 25/Dec/21

Wow, great sir.

Wow,greatsir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com