Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 162068 by HongKing last updated on 25/Dec/21

Answered by Lordose last updated on 26/Dec/21

  Ω = lim_(ε→0) ∫_(sin^(−1) (ε)) ^( sin^(−1) (1−ε)) log((cos(x))^(cot(x)) ∙(sin(x))^((cos(x))/(1+sin(x))) )dx    Ω = ∫_0 ^( (𝛑/2)) cot(x)log(cos(x))dx + ∫_0 ^(𝛑/2) ((cos(x))/(1+sin(x)))log(sin(x))dx     Ω = A + B  A =^(u=cos(x)) ∫_0 ^( 1) (u/( 1−u^2 ))log(u)du = Σ_(n=0) ^∞ ∫_0 ^( 1) u^(2n+1) log(u)du  A =^(IBP)  −(1/2)Σ_(n=0) ^∞ (1/(n+1))∫_0 ^( 1) u^(2n+1) du = −(1/4)Σ_(n=0) ^∞ (1/((n+1)^2 ))  A = −(1/4)𝛇(2) = −(𝛑^2 /(24))  B =^(u=sin(x)) ∫_0 ^( 1) ((log(u))/(1+u))du = Li_2 (−1) = −(𝛑^2 /(12))  Ω = A + B  𝛀 = −(𝛑^2 /8)  ∅sE

Ω=limϵ0sin1(ϵ)sin1(1ϵ)log((cos(x))cot(x)(sin(x))cos(x)1+sin(x))dxΩ=0π2cot(x)log(cos(x))dx+0π2cos(x)1+sin(x)log(sin(x))dxΩ=A+BA=u=cos(x)01u1u2log(u)du=n=001u2n+1log(u)duA=IBP12n=01n+101u2n+1du=14n=01(n+1)2A=14ζ(2)=π224B=u=sin(x)01log(u)1+udu=Li2(1)=π212Ω=A+BΩ=π28sE

Terms of Service

Privacy Policy

Contact: info@tinkutara.com