Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162117 by CM last updated on 27/Dec/21

Commented by cortano last updated on 27/Dec/21

 ∫ x^2  (√(4 −(1−x)^2 )) dx =?   [ 1−x = 2sin t ⇒dx=−2cos t dt ]   ∫ (1−2sin t)^2  (−2cos^2 t)dt   = −∫(3−4sin t−2cos 2t)(1+cos 2t)dt   =−∫(2+cos 2t−4sin t−4sin t cos 2t−cos 4t)dt    =−2t−((sin 2t)/2)−4cos t+((sin 4t)/4)+∫4sin t cos 2t dt   = −2arcsin (((1−x)/2))−2(√(3+2x−x^2 ))−(((1−x)(√(3+2x−x^2 )))/4)        +4∫(2cos^2 t−1)d(cos t)   = −2arcsin (((1−x)/2))−(((9−x)/4))(√(3+2x−x^2 ))        +(8/3)cos^3 t−4cos t + c

x24(1x)2dx=?[1x=2sintdx=2costdt](12sint)2(2cos2t)dt=(34sint2cos2t)(1+cos2t)dt=(2+cos2t4sint4sintcos2tcos4t)dt=2tsin2t24cost+sin4t4+4sintcos2tdt=2arcsin(1x2)23+2xx2(1x)3+2xx24+4(2cos2t1)d(cost)=2arcsin(1x2)(9x4)3+2xx2+83cos3t4cost+c

Answered by FongXD last updated on 27/Dec/21

I=∫x^2 (√(3+2x−x^2 ))dx=∫x^2 (√(4−(x−1)^2 ))dx  let x−1=2sinθ, ⇒ dx=2cosθdθ  I=∫(2sinθ+1)^2 (√(4−4sin^2 θ))×2cosθdθ  I=∫(4sin^2 θ+4sinθ+1)×4cos^2 θdθ  I=∫(4sin^2 2θ+4cos^2 θ)dθ+16∫cos^2 θsinθdθ  I=∫(2−2cos4θ+2+2cos2θ)dθ−((16)/3)cos^3 θ  I=4θ−(1/2)sin4θ+sin2θ−((16)/3)cos^3 θ+c    (∗)  but x−1=2sinθ, ⇒ sinθ=((x−1)/2), ⇒ θ=arcsin(((x−1)/2))  • cos^3 θ=(1−sin^2 θ)(√(1−sin^2 θ))=[1−(((x−1)/2))^2 ](√(1−(((x−1)/2))^2 ))=(1/( 8))(3+2x−x^2 )(√(3+2x−x^2 ))  • sin2θ=2sinθ(√(1−sin^2 θ))=2(((x−1)/2))(√(1−(((x−1)/2))^2 ))=(1/2)(x−1)(√(3+2x−x^2 ))  • sin4θ=2sin2θcos2θ=2sin2θ(1−2sin^2 θ)  ⇔ sin4θ=(x−1)(√(3+2x−x^2 ))[1−2(((x−1)/2))^2 ]  ⇒ sin4θ=(1/2)(x−1)(1+2x−x^2 )(√(3+2x−x^2 ))  (∗): I=4arcsin(((x−1)/2))−(1/4)(x−1)(1+2x−x^2 )(√(3+2x−x^2 ))+(1/2)(x−1)(√(3+2x−x^2 ))−(2/3)(3+2x−x^2 )(√(3+2x−x^2 ))+c  I=4arcsin(((x−1)/2))+(1/4)(x−1)(x^2 −2x+1)(√(3+2x−x^2 ))−(2/3)(3+2x−x^2 )(√(3+2x−x^2 ))+c  I=4arcsin(((x−1)/2))+(1/(12))[3(x^3 −3x^2 +3x−1)−8(3+2x−x^2 )](√(3+2x−x^2 ))+c  ⇒ I=4arcsin(((x−1)/2))+(1/(12))(3x^3 −x^2 −7x−27)(√(3+2x−x^2 ))+c

I=x23+2xx2dx=x24(x1)2dxletx1=2sinθ,dx=2cosθdθI=(2sinθ+1)244sin2θ×2cosθdθI=(4sin2θ+4sinθ+1)×4cos2θdθI=(4sin22θ+4cos2θ)dθ+16cos2θsinθdθI=(22cos4θ+2+2cos2θ)dθ163cos3θI=4θ12sin4θ+sin2θ163cos3θ+c()butx1=2sinθ,sinθ=x12,θ=arcsin(x12)cos3θ=(1sin2θ)1sin2θ=[1(x12)2]1(x12)2=18(3+2xx2)3+2xx2sin2θ=2sinθ1sin2θ=2(x12)1(x12)2=12(x1)3+2xx2sin4θ=2sin2θcos2θ=2sin2θ(12sin2θ)sin4θ=(x1)3+2xx2[12(x12)2]sin4θ=12(x1)(1+2xx2)3+2xx2():I=4arcsin(x12)14(x1)(1+2xx2)3+2xx2+12(x1)3+2xx223(3+2xx2)3+2xx2+cI=4arcsin(x12)+14(x1)(x22x+1)3+2xx223(3+2xx2)3+2xx2+cI=4arcsin(x12)+112[3(x33x2+3x1)8(3+2xx2)]3+2xx2+cI=4arcsin(x12)+112(3x3x27x27)3+2xx2+c

Answered by mathmax by abdo last updated on 27/Dec/21

Φ=∫ x^2 (√(−x^2 +2x+3))dx ⇒Φ=∫ x^2 (√(−(x^2 −2x−3)))dx  =∫ x^2 (√(−(x^2 −2x+1−4)))dx =∫x^2 (√(4−(x−1)^2 ))dx  changement x−1=2sinθ give  Φ=∫(1+2sinθ)^2 2 cosθ (2cosθ)dθ  =4∫  (2sinθ+1)^2  cos^2 θ dθ  =4∫ (4sin^2 θ +4sinθ +1)cos^2 θ dθ  =16∫ sin^2 θ .cos^2 θ +16∫ cos^2 θ sinθ dθ +4∫ cos^2 θ dθ  =4∫ sin^2 (2θ)dθ −((16)/3)cos^3 θ +2∫(1+cos(2θ))dθ  =2∫(1−cos(4θ))dθ−((16)/3)cos^3 θ +2θ  +sin(2θ)+C  =4θ −(1/2)sin(2θ) −((16)/3)cos^3 θ +sin(2θ) +C=4θ+(1/2)sin(2θ)−((16)/3)cos^3 θ +c  but θ=arcsin(((x−1)/2)) ⇒  Φ=4arcsin(((x−1)/2))+(1/2)sin(2arcsin(((x−1)/2)))  −((16)/3)((√(1−(((x−1)/2))^2 )))^3  +C

Φ=x2x2+2x+3dxΦ=x2(x22x3)dx=x2(x22x+14)dx=x24(x1)2dxchangementx1=2sinθgiveΦ=(1+2sinθ)22cosθ(2cosθ)dθ=4(2sinθ+1)2cos2θdθ=4(4sin2θ+4sinθ+1)cos2θdθ=16sin2θ.cos2θ+16cos2θsinθdθ+4cos2θdθ=4sin2(2θ)dθ163cos3θ+2(1+cos(2θ))dθ=2(1cos(4θ))dθ163cos3θ+2θ+sin(2θ)+C=4θ12sin(2θ)163cos3θ+sin(2θ)+C=4θ+12sin(2θ)163cos3θ+cbutθ=arcsin(x12)Φ=4arcsin(x12)+12sin(2arcsin(x12))163(1(x12)2)3+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com