All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 162117 by CM last updated on 27/Dec/21
Commented by cortano last updated on 27/Dec/21
∫x24−(1−x)2dx=?[1−x=2sint⇒dx=−2costdt]∫(1−2sint)2(−2cos2t)dt=−∫(3−4sint−2cos2t)(1+cos2t)dt=−∫(2+cos2t−4sint−4sintcos2t−cos4t)dt=−2t−sin2t2−4cost+sin4t4+∫4sintcos2tdt=−2arcsin(1−x2)−23+2x−x2−(1−x)3+2x−x24+4∫(2cos2t−1)d(cost)=−2arcsin(1−x2)−(9−x4)3+2x−x2+83cos3t−4cost+c
Answered by FongXD last updated on 27/Dec/21
I=∫x23+2x−x2dx=∫x24−(x−1)2dxletx−1=2sinθ,⇒dx=2cosθdθI=∫(2sinθ+1)24−4sin2θ×2cosθdθI=∫(4sin2θ+4sinθ+1)×4cos2θdθI=∫(4sin22θ+4cos2θ)dθ+16∫cos2θsinθdθI=∫(2−2cos4θ+2+2cos2θ)dθ−163cos3θI=4θ−12sin4θ+sin2θ−163cos3θ+c(∗)butx−1=2sinθ,⇒sinθ=x−12,⇒θ=arcsin(x−12)∙cos3θ=(1−sin2θ)1−sin2θ=[1−(x−12)2]1−(x−12)2=18(3+2x−x2)3+2x−x2∙sin2θ=2sinθ1−sin2θ=2(x−12)1−(x−12)2=12(x−1)3+2x−x2∙sin4θ=2sin2θcos2θ=2sin2θ(1−2sin2θ)⇔sin4θ=(x−1)3+2x−x2[1−2(x−12)2]⇒sin4θ=12(x−1)(1+2x−x2)3+2x−x2(∗):I=4arcsin(x−12)−14(x−1)(1+2x−x2)3+2x−x2+12(x−1)3+2x−x2−23(3+2x−x2)3+2x−x2+cI=4arcsin(x−12)+14(x−1)(x2−2x+1)3+2x−x2−23(3+2x−x2)3+2x−x2+cI=4arcsin(x−12)+112[3(x3−3x2+3x−1)−8(3+2x−x2)]3+2x−x2+c⇒I=4arcsin(x−12)+112(3x3−x2−7x−27)3+2x−x2+c
Answered by mathmax by abdo last updated on 27/Dec/21
Φ=∫x2−x2+2x+3dx⇒Φ=∫x2−(x2−2x−3)dx=∫x2−(x2−2x+1−4)dx=∫x24−(x−1)2dxchangementx−1=2sinθgiveΦ=∫(1+2sinθ)22cosθ(2cosθ)dθ=4∫(2sinθ+1)2cos2θdθ=4∫(4sin2θ+4sinθ+1)cos2θdθ=16∫sin2θ.cos2θ+16∫cos2θsinθdθ+4∫cos2θdθ=4∫sin2(2θ)dθ−163cos3θ+2∫(1+cos(2θ))dθ=2∫(1−cos(4θ))dθ−163cos3θ+2θ+sin(2θ)+C=4θ−12sin(2θ)−163cos3θ+sin(2θ)+C=4θ+12sin(2θ)−163cos3θ+cbutθ=arcsin(x−12)⇒Φ=4arcsin(x−12)+12sin(2arcsin(x−12))−163(1−(x−12)2)3+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com