Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 162139 by LEKOUMA last updated on 27/Dec/21

Answered by alephzero last updated on 27/Dec/21

lim_(x→0^+ ) ((√x)/(1−ln (e−x))) =   =lim_(x→0^+ ) (((d/dx)((√x)))/((d/dx)(1−ln (e−x)))) =   =lim_(x→0^+ ) ((1/(2(√x)))/((d/dx)(1)−(d/dx)(ln (e−x)))) =  =lim_(x→0^+ ) ((1/(2(√x)))/(0−(d/dx)(ln (e−x)))) =   =lim_(x→0^+ ) ((1/(2(√x)))/(−((d/dg)(ln g)×(d/dx)(e−x)))) =  =lim_(x→0^+ ) ((1/(2(√x)))/(−((1/g)×((d/dx)(e)−(d/dx)(x)))) =  =lim_(x→0^+ ) ((1/(2(√x)))/(−((1/g)×(0−1)))) =   =lim_(x→0^+ ) ((1/(2(√x)))/(−((1/g)×(−1)))) =  =lim_(x→0^+ ) ((1/(2(√x)))/(−((1/(e−x))×(−1)))) =  =lim_(x→0^+ ) ((1/(2(√x)))/(−(−(1/(e−x))))) = lim_(x→0^+ ) ((1/(2(√x)))/(1/(e−x))) =  =lim_(x→0^+ ) ((e−x)/(2(√x))) =lim_(x→0^+ ) ((e−x)×(1/(2(√x))))  lim_(x→0^+ ) (e−x) = e  lim_(x→0^+ ) ((1/(2(√x)))) = +∞  e×(+∞) = +∞  lim_(x→0^+ ) ((√x)/(1−ln (e−x))) = +∞

limx0+x1ln(ex)==limx0+ddx(x)ddx(1ln(ex))==limx0+12xddx(1)ddx(ln(ex))==limx0+12x0ddx(ln(ex))==limx0+12x(ddg(lng)×ddx(ex))==limx0+12x(1g×(ddx(e)ddx(x))==limx0+12x(1g×(01))==limx0+12x(1g×(1))==limx0+12x(1ex×(1))==limx0+12x(1ex)=limx0+12x1ex==limx0+ex2x=limx0+((ex)×12x)limx0+(ex)=elimx0+(12x)=+e×(+)=+limx0+x1ln(ex)=+

Answered by mathmax by abdo last updated on 27/Dec/21

f(x)=((√x)/(1−ln(e−x)))  we do the changement ln(e−x)=t ⇒  e−x=e^t  ⇒x=e−e^t  ⇒f(x)=((√(e−e^t ))/(1−t))    (x→0 ⇒t→1)  =_(1−t=z)    ((√(e−e^(1−z) ))/z)   (z→0)  Ψ(z)=((√(e−e^(1−z) ))/z)=(((√e)(√(1−e^(−z) )))/z)=((√e)/z)(1−e^(−z) )^(1/2)   e^(−z) ∼1−z ⇒1−e^(−z) ∼z ⇒Ψ(z)∼((√e)/z)(√z)=((√e)/( (√z))) →+∞  ⇒lim_(x→0^+ )   f(x)=+∞

f(x)=x1ln(ex)wedothechangementln(ex)=tex=etx=eetf(x)=eet1t(x0t1)=1t=zee1zz(z0)Ψ(z)=ee1zz=e1ezz=ez(1ez)12ez1z1ezzΨ(z)ezz=ez+limx0+f(x)=+

Terms of Service

Privacy Policy

Contact: info@tinkutara.com