Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 162368 by mr W last updated on 29/Dec/21

Commented by mr W last updated on 29/Dec/21

find the sum of area of all red circles.

findthesumofareaofallredcircles.

Commented by mr W last updated on 29/Dec/21

final result  S=π((√2)−1)^4 +((πψ^((3)) (2+(√2)))/3)     ≈0.172564

finalresultS=π(21)4+πψ(3)(2+2)30.172564

Answered by aleks041103 last updated on 29/Dec/21

Let the radius of the biggest circle be r_0 .  Then, using the theorem in Q.161764,  (1/( (√r_1 )))=(1/( (√1)))+(1/( (√r_0 )))  By analogy:  (1/( (√r_(n+1) )))=1+(1/( (√r_n )))  Let a_n =(1/( (√r_n ))).  ⇒a_(n+1) =1+a_n   ⇒a_n =n+a_0 =n+(1/( (√r_0 )))=(1/( (√r_n )))  ⇒r_n =(1/((n+(1/( (√r_0 ))))^2 )).  We seek S=πr_0 ^2 +2Σ_(i=1) ^∞ πr_i ^2   S=πr_0 ^2 +2πΣ_(n=1) ^∞ (1/((n+1/(√r_0 ))^4 ))  Now we find r_0 .  (r_0 +1)^2 =2(1−r_0 )^2   r_0 +1=(√2)−(√2)r_0   (1+(√2))r_0 =(√2)−1  ⇒r_0 =(((√2)−1)/( (√2)+1))=((((√2)−1)^2 )/(2−1))=((√2)−1)^2 =r_0   ⇒(1/( (√r_0 )))=(1/( (√2)−1))=(√2)+1  ⇒S=π((√2)−1)^4 +2πΣ_(n=1) ^∞ (1/((n+1+(√2))^4 ))

Lettheradiusofthebiggestcircleber0.Then,usingthetheoreminQ.161764,1r1=11+1r0Byanalogy:1rn+1=1+1rnLetan=1rn.an+1=1+anan=n+a0=n+1r0=1rnrn=1(n+1r0)2.WeseekS=πr02+2i=1πri2S=πr02+2πn=11(n+1/r0)4Nowwefindr0.(r0+1)2=2(1r0)2r0+1=22r0(1+2)r0=21r0=212+1=(21)221=(21)2=r01r0=121=2+1S=π(21)4+2πn=11(n+1+2)4

Commented by mr W last updated on 29/Dec/21

also this is perfect! congratulations  for the perfect solution sir!

alsothisisperfect!congratulationsfortheperfectsolutionsir!

Commented by mr W last updated on 29/Dec/21

it′s a genius act to apply the formula  from Q161764!

itsageniusacttoapplytheformulafromQ161764!

Commented by aleks041103 last updated on 29/Dec/21

Lets find the sum  Σ_(n=1) ^∞ (1/((n+k)^4 ))=s  ψ_0 (z)=(1/(Γ(z))) ((dΓ(z))/dz) − digamma function  define  ψ_n (z)=((d^n ψ_0 (z))/dz^n )  It is kown that   ψ_n (z)=(−1)^(n+1) n!Σ_(k=0) ^∞ (1/((z+k)^(n+1) ))  ⇒ψ_3 (a)=6Σ_(n=0) ^∞ (1/((n+a)^4 ))  ⇒Σ_(n=1) ^∞ (1/((n+a)^4 ))=((ψ_3 (a))/6)−(1/a^4 )

Letsfindthesumn=11(n+k)4=sψ0(z)=1Γ(z)dΓ(z)dzdigammafunctiondefineψn(z)=dnψ0(z)dznItiskownthatψn(z)=(1)n+1n!k=01(z+k)n+1ψ3(a)=6n=01(n+a)4n=11(n+a)4=ψ3(a)61a4

Commented by aleks041103 last updated on 29/Dec/21

to be continued

tobecontinued

Commented by mr W last updated on 29/Dec/21

this is perfect sir!  i created this question without knowing  that the solution could be so simple  as you have presented.

thisisperfectsir!icreatedthisquestionwithoutknowingthatthesolutioncouldbesosimpleasyouhavepresented.

Commented by aleks041103 last updated on 29/Dec/21

Also  ψ_3 (a+1)=6Σ_(n=0) ^∞ (1/((n+1+a)^4 ))=6Σ_(n=1) ^∞ (1/((n+a)^4 ))  ⇒Σ_(n=1) ^∞ (1/((n+a)^4 ))=((ψ_3 (a+1))/6)

Alsoψ3(a+1)=6n=01(n+1+a)4=6n=11(n+a)4n=11(n+a)4=ψ3(a+1)6

Terms of Service

Privacy Policy

Contact: info@tinkutara.com