Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 162490 by amin96 last updated on 29/Dec/21

Answered by mr W last updated on 30/Dec/21

Commented by mr W last updated on 30/Dec/21

R=4=radius  OA=a=1  s=side length of equilateral  OC=(√(s^2 −a^2 ))  DC=s cos ((π/3)+α)=(1/2)(s cos α−(√3) s sin α)           =(1/2)((√(s^2 −a^2 ))−(√3) a)  DB=s sin ((π/3)+α)=(1/2)((√3) s cos α+s sin α)          =(1/2)((√(3(s^2 −a^2 )))+a)  OD=(√(s^2 −a^2 ))− (1/2)((√(s^2 −a^2 ))−(√3) a)         = (1/2)((√(s^2 −a^2 ))+(√3) a)  OD^2 +DB^2 =OB^2    (1/4)((√(s^2 −a^2 ))+(√3) a)^2 +(1/4)((√(3(s^2 −a^2 )))+a)^2 =R^2    s^2 −a^2 +3a^2 +2a(√(3(s^2 −a^2 )))+3(s^2 −a^2 )+a^2 +2a(√(3(s^2 −a^2 )))=4R^2    a(√(3(s^2 −a^2 )))=R^2 −s^2    3a^2 (s^2 −a^2 )=s^4 +R^4 −2R^2 s^2    s^4 −(2R^2 +3a^2 )s^2 +R^4 +3a^4 =0  s^2 =((2R^2 +3a^2 −(√((2R^2 +3a^2 )^2 −4(R^4 +3a^4 ))))/2)      =((2R^2 +3a^2 −a(√(3(4R^2 −a^2 ))))/2)  with R=4, a=1:  s^2 =((2×4^2 +3×1^2 −1(√(3(4×4^2 −1^2 ))))/2)=((35−3(√(21)))/2)  area of blue equilateral  A_(blue) =(((√3)s^2 )/4)=(((√3)(35−3(√(21))))/8)=((35(√3)−9(√7))/8)≈4.601    ===================  let ξ=(a/R)  ((s/R))^2 =((2+3ξ^2 −ξ(√(3(4−ξ^2 ))))/2)  ((s/R))_(max) =1 at ξ=0  ((s/R))_(min) =(√3)−1 at ξ=(((√3)−1)/( (√2)))

R=4=radiusOA=a=1s=sidelengthofequilateralOC=s2a2DC=scos(π3+α)=12(scosα3ssinα)=12(s2a23a)DB=ssin(π3+α)=12(3scosα+ssinα)=12(3(s2a2)+a)OD=s2a212(s2a23a)=12(s2a2+3a)OD2+DB2=OB214(s2a2+3a)2+14(3(s2a2)+a)2=R2s2a2+3a2+2a3(s2a2)+3(s2a2)+a2+2a3(s2a2)=4R2a3(s2a2)=R2s23a2(s2a2)=s4+R42R2s2s4(2R2+3a2)s2+R4+3a4=0s2=2R2+3a2(2R2+3a2)24(R4+3a4)2=2R2+3a2a3(4R2a2)2withR=4,a=1:s2=2×42+3×1213(4×4212)2=353212areaofblueequilateralAblue=3s24=3(35321)8=3539784.601===================letξ=aR(sR)2=2+3ξ2ξ3(4ξ2)2(sR)max=1atξ=0(sR)min=31atξ=312

Commented by mr W last updated on 30/Dec/21

Commented by amin96 last updated on 30/Dec/21

greaat sir

greaatsir

Commented by Tawa11 last updated on 30/Dec/21

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com