Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16277 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/Jun/17

in triangle:AB^Δ C,consteact 3 equilateral  triangle on each sides.  prove that:  AL=BM=CN .

intriangle:ABCΔ,consteact3equilateraltriangleoneachsides.provethat:AL=BM=CN.

Answered by mrW1 last updated on 20/Jun/17

AB=NB  BL=BC  ∠ABL=∠B+60°=∠NBC  ⇒ΔABL≡ΔNBC  ⇒AL=NC  similarly  NC=MB  ⇒AL=BM=CN    additionally:  ∠BCG=∠BLG  ∠CBG=∠CLG  ⇒∠BCG+∠CBG=∠BLG+∠CLG=60^°   ⇒∠BGC=180°−(∠BCG+∠CBG)=120°  similarly  ⇒∠AGB=120°  ⇒∠CGA=120°

AB=NBBL=BCABL=B+60°=NBCΔABLΔNBCAL=NCsimilarlyNC=MBAL=BM=CNadditionally:BCG=BLGCBG=CLGBCG+CBG=BLG+CLG=60°BGC=180°(BCG+CBG)=120°similarlyAGB=120°CGA=120°

Commented by ajfour last updated on 20/Jun/17

 wonderful Sir!

wonderfulSir!

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/Jun/17

thank you dear mrW1.so nice.

thankyoudearmrW1.sonice.

Answered by ajfour last updated on 20/Jun/17

 In ΔNAC    CN^( 2) =b^2 +c^2 −2bccos (A+π/3)   In ΔMCB   BM^( 2) =a^2 +b^2 −2abcos (C+π/3)   CN^( 2) −BM^( 2)  = c^2 −a^2   −2b[ccos (A+π/3)−acos (C+π/3)]                        =c^2 −a^2 −2b{((ccos A)/2)−((c(√3)sin A)/2)                              −((acos C)/2)+((a(√3))/2)sin C }    =c^2 −a^2 −b[ccos A−acos C]   =c^2 −a^2 −b[((c(b^2 +c^2 −a^2 ))/(2bc))−((a(a^2 +b^2 −c^2 ))/(2ab))]  =c^2 −a^2 −(1/2)[b^2 +c^2 −a^2 −a^2 −b^2 +c^2 ]   = c^2 −a^2 −(c^2 −a^2 ) =0  Hence  CN=BM   similarly     CN^( 2) −AL^2  =0   can be proved .  ⇒      AL = BM = CN .

InΔNACCN2=b2+c22bccos(A+π/3)InΔMCBBM2=a2+b22abcos(C+π/3)CN2BM2=c2a22b[ccos(A+π/3)acos(C+π/3)]=c2a22b{ccosA2c3sinA2acosC2+a32sinC}=c2a2b[ccosAacosC]=c2a2b[c(b2+c2a2)2bca(a2+b2c2)2ab]=c2a212[b2+c2a2a2b2+c2]=c2a2(c2a2)=0HenceCN=BMsimilarlyCN2AL2=0canbeproved.AL=BM=CN.

Commented by ajfour last updated on 20/Jun/17

 very foolish..

veryfoolish..

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/Jun/17

thank you dear mr Ajfour.it is beautiful.

thankyoudearmrAjfour.itisbeautiful.

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 20/Jun/17

A(a),B(b),C(c),M(m),N(n),L(l)  ω^2 +ω+1=0,(1/ω)=−(1+ω),(1/ω^2 )=ω  ω=((−1+i(√3))/2)  c+ω.l+ω^2 .b=0⇒l=−((c+ω^2 .b)/ω)=(1+ω)(c+ω^2 .b)=  =c+ω^2 .b+ω.c+ω^3 .b=b+c+ω.c+ω^2 .b  b+ω.n+ω^2 .a=0⇒n=−((b+ω^2 .a)/ω)=(1+ω)(b+ω^2 .a)=  =a+b+ω.b+ω^2 .a  a+ω.m+ω^2 .c=0⇒m=−((a+ω^2 .c)/ω)=(1+ω)(a+ω^2 .c)=  =a+c+ω.a+ω^2 .c  AL=a−l=a−(b+c+ω.c+ω^2 .b)=a−b−c−ω.c+(1+ω).b=  =a−b−c−ω.c+b+ω.b=(a−c)+ω(b−c)=  =a−c+((−1+i(√3))/2)(b−c)=(1/2)(2a−2c−b+c+i(√3)(b−c))=  AL=(1/2)(2a−b−c)+i((√3)/2)(b−c)  BM=(1/2)(2b−a−c)+i((√3)/2)(c−a)  CN=(1/2)(2c−a−b)+i((√3)/2)(a−b)  AL^2 =(1/4)(2a−b−c)^2 +(3/4)(b−c)^2 =  =(1/4)(4a^2 +b^2 +c^2 −4ab−4ac+2bc+3(b^2 +c^2 −2bc))=  =(1/4)(4a^2 +4b^2 +4c^2 −4ab−4ac−4bc)=  =a^2 +b^2 +c^2 −ab−ac−bc  ⇒AL=BM=CN=(√(a^2 +b^2 +c^2 −ab−ac−bc)) .■

A(a),B(b),C(c),M(m),N(n),L(l)ω2+ω+1=0,1ω=(1+ω),1ω2=ωω=1+i32c+ω.l+ω2.b=0l=c+ω2.bω=(1+ω)(c+ω2.b)==c+ω2.b+ω.c+ω3.b=b+c+ω.c+ω2.bb+ω.n+ω2.a=0n=b+ω2.aω=(1+ω)(b+ω2.a)==a+b+ω.b+ω2.aa+ω.m+ω2.c=0m=a+ω2.cω=(1+ω)(a+ω2.c)==a+c+ω.a+ω2.cAL=al=a(b+c+ω.c+ω2.b)=abcω.c+(1+ω).b==abcω.c+b+ω.b=(ac)+ω(bc)==ac+1+i32(bc)=12(2a2cb+c+i3(bc))=AL=12(2abc)+i32(bc)BM=12(2bac)+i32(ca)CN=12(2cab)+i32(ab)AL2=14(2abc)2+34(bc)2==14(4a2+b2+c24ab4ac+2bc+3(b2+c22bc))==14(4a2+4b2+4c24ab4ac4bc)==a2+b2+c2abacbcAL=BM=CN=a2+b2+c2abacbc.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com