All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 163481 by smallEinstein last updated on 07/Jan/22
Answered by Mathspace last updated on 07/Jan/22
Ψn=∫0∞cos(xn)logxdxletf(a)=∫0∞xacos(xn)dxf′(a)=∫0∞xalogxcos(xn)dx⇒f′(0)=∫0∞cos(xn)logxdxf(a)=Re(∫0∞xaeixndx)∫0∞xaeixndxletixn=−t⇒xn=it⇒x=(it)1n=eiπ2nt1n⇒∫0∞xaeixndx=eiπ2n∫0∞eiπa2ntan1nt1n−1e−tdt=1neiπ2n(a+1)∫0∞ta+1n−1e−tdt=1nΓ(a+1n)eiπ2n(a+1)⇒f(a)=1nΓ(a+1n)cos(π(a+1)2n)⇒f′(a)=1n2Γ′(a+1n)cos(π(a+1)2n)−π2n2sin(π(a+1)2n)Γ(a+1n)Ψn=f′(0)=1n2Γ′(1n)cos(π2n)−π2n2sin(π2n)Γ(1n)Ψ4=116Γ′(14)cos(π8)−π32Γ(14)sin(π8)=∫0∞cos(x4)logxdx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com