Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16409 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Jun/17

ΔABC,is equilateral and ′D′,is a point on circumcircle of AB^Δ C.  prove that:                           DA=DB+DC.

ΔABC,isequilateralandD,isapointoncircumcircleofABCΔ.provethat:DA=DB+DC.

Commented by mrW1 last updated on 21/Jun/17

...and ΔABC is equilateral.

...andΔABCisequilateral.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Jun/17

yes! you are right dear master.

yes!youarerightdearmaster.

Commented by RasheedSoomro last updated on 22/Jun/17

D is any point of cercumference  If D is beyond CB^(⌢)   say it is on AB^(⌢)   then how           DA=DB+DC   ?  How? pl explain.

DisanypointofcercumferenceIfDisbeyondCBsayitisonABthenhowDA=DB+DC?How?plexplain.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Jun/17

Commented by RasheedSoomro last updated on 22/Jun/17

This means: For the result DA=DB+DC  D must be on BC^(⌢)      and  for the result DC=DA+DB   D must be on  AB^(⌢)  .  If we take the point D on AB^(⌢)  the quadrilateral  ABDCremains no longer convex.

Thismeans:FortheresultDA=DB+DCDmustbeonBCandfortheresultDC=DA+DBDmustbeonAB.IfwetakethepointDonABthequadrilateralABDCremainsnolongerconvex.

Commented by RasheedSoomro last updated on 22/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Jun/17

if we take D on AB,relation:DA=DB+DC  is not valid.  this quistion just say that:  if D be a point on circumcircle, and  we connect this to verteses of ABC,  length of longest line from D to A,B,or  C,equails to sum of other 2  lines,  that have smaller lengths.

ifwetakeDonAB,relation:DA=DB+DCisnotvalid.thisquistionjustsaythat:ifDbeapointoncircumcircle,andweconnectthistovertesesofABC,lengthoflongestlinefromDtoA,B,orC,equailstosumofother2lines,thathavesmallerlengths.

Commented by RasheedSoomro last updated on 22/Jun/17

Now the statement of the theorm  is right sir! Thanks!

Nowthestatementofthetheormisrightsir!Thanks!

Answered by Tinkutara last updated on 22/Jun/17

Since ABDC is cyclic, so  AB.CD + AC.BD = AD.BC  (See Q. 16070)  Also, AB = BC = AC  ∴ CD + BD = AD

SinceABDCiscyclic,soAB.CD+AC.BD=AD.BC(SeeQ.16070)Also,AB=BC=ACCD+BD=AD

Answered by ajfour last updated on 22/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Jun/17

thank you mr Ajfour.

thankyoumrAjfour.

Commented by ajfour last updated on 22/Jun/17

 Let us call  CD = a ,  BD = b   In △ADB,       x^2 +b^2 −s^2  = 2bx cos ∠ADB    ⇒  x^2 +b^2 −s^2  = bx         .....(i)   In △CDB,       a^2 +b^2 −s^2  = 2ab cos ∠CDB       a^2 +b^2 −s^2 = −ab    (as ∠CDB=2π/3)  subtracting thie eqn. from (i) :      x^2 −a^2 = bx+ab     (x−a)(x+a) = b(x+a)   Either x=−a , or         x−a = b    ⇒   x =a+b       DA = CD+BD .

LetuscallCD=a,BD=bInADB,x2+b2s2=2bxcosADBx2+b2s2=bx.....(i)InCDB,a2+b2s2=2abcosCDBa2+b2s2=ab(asCDB=2π/3)subtractingthieeqn.from(i):x2a2=bx+ab(xa)(x+a)=b(x+a)Eitherx=a,orxa=bx=a+bDA=CD+BD.

Answered by mrW1 last updated on 22/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Jun/17

thank you mrW1.

thankyoumrW1.

Commented by mrW1 last updated on 22/Jun/17

add EB // CD  ∠CDA=∠CEB=60°  ...  CDFE is parallelogram,  ⇒CD=CF  ΔDBF and ΔAFE are equilateral,  ⇒DB=DF  ⇒CD=EF=FA  ⇒DB+CD=DF+FA=DA

addEB//CDCDA=CEB=60°...CDFEisparallelogram,CD=CFΔDBFandΔAFEareequilateral,DB=DFCD=EF=FADB+CD=DF+FA=DA

Terms of Service

Privacy Policy

Contact: info@tinkutara.com