Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 164178 by mr W last updated on 15/Jan/22

Commented by mr W last updated on 15/Jan/22

two points P, Q lie on the parabola  with PQ=b. find the locus of its  midpoint M. find the lowest possible  position of M.

twopointsP,QlieontheparabolawithPQ=b.findthelocusofitsmidpointM.findthelowestpossiblepositionofM.

Answered by mindispower last updated on 15/Jan/22

P(a,a^2 );Q(b,b^2 )  M=(((a+b)/2),((a^2 +b^2 )/2))  PQ=l⇒(b−a)^2 +(b^2 −a^2 )^2 =l^2   (b−a)^2 (1+(b+a)^2 )=l^2   b−a=y  b+a=z  y^2 (1+z^2 )=l^2   a^2 +b^2 =((y^2 +z^2 )/2)  we Want Min((1/8)(y^2 +z^2 )∵y^2 (1+z^2 )=l^2   f(x,y,γ)=(1/8)y^2 +z^2 −γ(y^2 (1+z^2 )−l^2 )  ∂_y f=0⇔(1/4)y−2yγ(1+z^2 )=0  y=0 or γ=(1/(8(1+z^2 )))  ∂zf=0⇔0⇒(1/4)z−2γy^2 z=0  z(1−8γy^2 )=0  y^2 (1+z^2 )=l^2   y=0⇒l=0,z=0 P=Q=O(0,0)  l>0,z=0⇒y^2 =l^2 ,y(1−8γ)=0  y=b−a,0=a+b  b=−a=(y/2)M=((a^2 +b^2 )/2)=(l^2 /4)  γ=(1/(8(1+z^2 )))=(1/(8y^2 ))  y^2 =1+z^2   y^4 =l^2   y^2 =l  z^2 =l−1,l≥1  (l/4)≤(l^2 /4)  l=0 min=0  l∈[0,1] min=(l^2 /4)  l>1 min=(l/4) i did quick i will tchek it

P(a,a2);Q(b,b2)M=(a+b2,a2+b22)PQ=l(ba)2+(b2a2)2=l2(ba)2(1+(b+a)2)=l2ba=yb+a=zy2(1+z2)=l2a2+b2=y2+z22weWantMin(18(y2+z2)y2(1+z2)=l2f(x,y,γ)=18y2+z2γ(y2(1+z2)l2)yf=014y2yγ(1+z2)=0y=0orγ=18(1+z2)zf=0014z2γy2z=0z(18γy2)=0y2(1+z2)=l2y=0l=0,z=0P=Q=O(0,0)l>0,z=0y2=l2,y(18γ)=0y=ba,0=a+bb=a=y2M=a2+b22=l24γ=18(1+z2)=18y2y2=1+z2y4=l2y2=lz2=l1,l1l4l24l=0min=0l[0,1]min=l24l>1min=l4ididquickiwilltchekit

Commented by mr W last updated on 15/Jan/22

thanks sir!

thankssir!

Commented by mindispower last updated on 15/Jan/22

pleasur sir nice day

pleasursirniceday

Answered by mr W last updated on 15/Jan/22

parabola y=(x^2 /a) with a=1 here  say P(p,(p^2 /a)), Q(q,(q^2 /a))  say M(u,v)  u=((p+q)/2)  v=((p^2 +q^2 )/(2a))  ⇒p+q=2u  ⇒p^2 +q^2 =2av  (p+q)^2 =p^2 +q^2 +2pq  (p−q)^2 =p^2 +q^2 −2pq  ⇒(p−q)^2 +(p+q)^2 =2(p^2 +q^2 )  ⇒(p−q)^2 =2(2av)−(2u)^2 =4(av−u^2 )  PQ^2 =(p−q)^2 +((p^2 /a)−(q^2 /a))^2 =b^2   (p−q)^2 [1+(((p+q)^2 )/a^2 )]=b^2   4(av−u^2 )[1+(((2u)^2 )/a^2 )]=b^2   4(av−u^2 )(1+((4u^2 )/a^2 ))=b^2   v=(u^2 /a)+((ab^2 )/(4(a^2 +4u^2 )))  or locus of point M is  y=(x^2 /a)+((ab^2 )/(4(a^2 +4x^2 )))    y=((4x^2 +a^2 )/(4a))+((ab^2 )/(4(a^2 +4x^2 )))−(a/4)    ≥2(√(((4x^2 +a^2 )/(4a))×((ab^2 )/(4(a^2 +4x^2 )))))−(a/4)    =(b/2)−(a/4)  i.e.  y_(min) =(b/2)−(a/4) when  ((4x^2 +a^2 )/(4a))=((ab^2 )/(4(a^2 +4x^2 )))  4x^2 +a^2 =ab  x=±((√(a(b−a)))/2)  that means the lowest position of M  is (±((√(a(b−a)))/2), (b/2)−(a/4))

parabolay=x2awitha=1heresayP(p,p2a),Q(q,q2a)sayM(u,v)u=p+q2v=p2+q22ap+q=2up2+q2=2av(p+q)2=p2+q2+2pq(pq)2=p2+q22pq(pq)2+(p+q)2=2(p2+q2)(pq)2=2(2av)(2u)2=4(avu2)PQ2=(pq)2+(p2aq2a)2=b2(pq)2[1+(p+q)2a2]=b24(avu2)[1+(2u)2a2]=b24(avu2)(1+4u2a2)=b2v=u2a+ab24(a2+4u2)orlocusofpointMisy=x2a+ab24(a2+4x2)y=4x2+a24a+ab24(a2+4x2)a424x2+a24a×ab24(a2+4x2)a4=b2a4i.e.ymin=b2a4when4x2+a24a=ab24(a2+4x2)4x2+a2=abx=±a(ba)2thatmeansthelowestpositionofMis(±a(ba)2,b2a4)

Commented by mr W last updated on 15/Jan/22

Commented by Tawa11 last updated on 15/Jan/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com