Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 164553 by mkam last updated on 18/Jan/22

Commented by tabata last updated on 18/Jan/22

????

????

Answered by mathmax by abdo last updated on 19/Jan/22

Ψ=∫_0 ^(2π) (dθ/(1+tcosθ))  changement e^(iθ) =z give  Ψ=∫_(∣z∣=1)      (dz/(iz(1+t((z+z^(−1) )/2))))=∫_(∣z∣=1)   ((−2idz)/(z(2+tz+tz^(−1) )))  =∫_(∣z∣=1)   ((−2idz)/(2z+tz^2  +t))=∫_(∣z∣=1)   ((−2idz)/(tz^2 +2z+t))  ϕ(z)=((−2i)/(tz^2  +2z+t))  tz^(2 ) +2z+t=0→Δ^′ =1−t^2   case1  Δ^′ <0 ⇒ 2complex roots  z_1 =((−1+i(√(t^2 −1)))/t)   (t≠0)  z_2 =((−1−i(√(t^2 −1)))/t)  ∣z_1 ∣−1=(1/(∣t∣))(√(1+t^2 −1))=1−1=0 ⇒∣z_1 ∣=1  also  ∣z_2 ∣−1=0 ⇒∣z_2 ∣=1  ∫_(∣z∣=1) ϕ(z)dz=2iπ{Res(ϕ,z_1 )+Res(ϕ,z_2 )}=0  due to Res(ϕ,z_2 )=−Res(ϕ,z_1 )  case2  Δ^′ >0⇒1−t^2 >0 ⇒∣t∣<1 ⇒2racines  z_1 =((−1+(√(1−t^2 )))/t) and z_2 =((−1−(√(1−t^2 )))/t)  ∣z_1 ∣−1=((1−(√(1−t^2 )))/(∣t∣))−1=((1−(√(1−t^2 ))−∣t∣)/(∣g∣))=((1−∣t∣−(√(1−t^2 )))/(∣t∣))  (1−∣t∣)^2 −1+t^2 =t^2 −2∣t∣+1−1+t^2 =2t^2 −2∣t∣=2∣t∣(t−1)<0 ⇒  ∣z_1 ∣<1  ∣z_2 ∣−1=((1+(√(1−t^2 )))/(∣t∣))−1=((1−∣t∣+(√(1−t^2 )))/(∣t∣))>0 ⇒∣z_2 ∣>1(out of circle)  ∫_(∣z∣=1)   ϕ(z)dz=2iπ Res(ϕ,z_1 ) wehave ϕ(z)=((−2i)/(t(z−z_1 )(z−z_2 )))  ⇒Res(ϕ,z_1 )=((−2i)/(t(z_1 −z_2 )))=((−2i)/(t×((2(√(1−t^2 )))/t)))=((−i)/( (√(1−t^2 )))) ⇒  ∫_(∣z∣=1)   ϕ(z)dz=2iπ.((−i)/( (√(1−t^2 ))))=((2π)/( (√(1−t^2 ))))=Ψ

Ψ=02πdθ1+tcosθchangementeiθ=zgiveΨ=z∣=1dziz(1+tz+z12)=z∣=12idzz(2+tz+tz1)=z∣=12idz2z+tz2+t=z∣=12idztz2+2z+tφ(z)=2itz2+2z+ttz2+2z+t=0Δ=1t2case1Δ<02complexrootsz1=1+it21t(t0)z2=1it21tz11=1t1+t21=11=0⇒∣z1∣=1alsoz21=0⇒∣z2∣=1z∣=1φ(z)dz=2iπ{Res(φ,z1)+Res(φ,z2)}=0duetoRes(φ,z2)=Res(φ,z1)case2Δ>01t2>0⇒∣t∣<12racinesz1=1+1t2tandz2=11t2tz11=11t2t1=11t2tg=1t1t2t(1t)21+t2=t22t+11+t2=2t22t∣=2t(t1)<0z1∣<1z21=1+1t2t1=1t+1t2t>0⇒∣z2∣>1(outofcircle)z∣=1φ(z)dz=2iπRes(φ,z1)wehaveφ(z)=2it(zz1)(zz2)Res(φ,z1)=2it(z1z2)=2it×21t2t=i1t2z∣=1φ(z)dz=2iπ.i1t2=2π1t2=Ψ

Answered by mkam last updated on 19/Jan/22

Answered by mkam last updated on 19/Jan/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com