Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16464 by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 22/Jun/17

AB^Δ C,is equilateral and ′K′ is a point  on circumcircle  of it.draw KH,KJ,KL  parallel to ABC′s sides as showen.  1)prove that:                  KJ=KH+KL   2)drawing KL & KJ, makes 3 regions  in triangle ABC,that we name this   regions as: S_1 <S_2 <S_3 .find maximum  of ratio:(S_3 /(S_1 +S_2 )),when ′K′,moves from  m^ idpoint of K^ B to midpoint of KA.  S_1 =area of region no.1

ABCΔ,isequilateralandKisapointoncircumcircleofit.drawKH,KJ,KLparalleltoABCssidesasshowen.1)provethat:KJ=KH+KL2)drawingKL&KJ,makes3regionsintriangleABC,thatwenamethisregionsas:S1<S2<S3.findmaximumofratio:S3S1+S2,whenK,movesfrommidpointofKBtomidpointofKA.S1=areaofregionno.1

Commented by mrW1 last updated on 23/Jun/17

ΔHLJ is equilateral,   ⇒KH+KL=KJ,  see Q.16409    max. (S_3 /(S_1 +S_2 ))=((7/9)/((1/9)+(1/9)))=(7/2)   ???

ΔHLJisequilateral,KH+KL=KJ,seeQ.16409max.S3S1+S2=7919+19=72???

Terms of Service

Privacy Policy

Contact: info@tinkutara.com