Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 164672 by mathlove last updated on 20/Jan/22

Answered by Ar Brandon last updated on 20/Jan/22

Ω=∫_0 ^π ((cosx+1)/( (√(3+4cosx+cos^2 x))))dx=∫_0 ^π ((cosx+1)/( (√((cosx+1)(cosx+3)))))dx      =∫_0 ^π (√((cosx+1)/(cosx+3)))dx=(√2)∫_0 ^π ((cos((x/2)))/( (√(4−2sin^2 ((x/2))))))dx      =2∫_0 ^(π/2) ((cosx)/( (√(2−sin^2 x))))dx=2[arcsin(((sinx)/( (√2))))]_0 ^(π/2) =2((π/4))=(π/2)

Ω=0πcosx+13+4cosx+cos2xdx=0πcosx+1(cosx+1)(cosx+3)dx=0πcosx+1cosx+3dx=20πcos(x2)42sin2(x2)dx=20π2cosx2sin2xdx=2[arcsin(sinx2)]0π2=2(π4)=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com