Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 165433 by mathlove last updated on 01/Feb/22

Answered by aleks041103 last updated on 01/Feb/22

  (3/2^x )+(3/3^x )=2(((3/2)^x )/2^x )+2(((3/2)^(−x) )/3^x )  ⇒((3−2(3/2)^x )/2^x )=((2(3/2)^(−x) −3)/3^x )  ⇒((3/2))^x (3−2((3/2))^x )=2((3/2))^(−x) −3  t=((3/2))^x   ⇒t(3−2t)=(2/t)−3  3t^2 −2t^3 +3t−2=0  2t^3 −3t^2 −3t+2=0  2(t^3 +1)−3t(t+1)=0  2(t+1)(t^2 −t+1)−3t(t+1)=0  (t+1)(2t^2 −5t+2)=0  t_1 =−1  t_(2,3) =((5±(√(25−4.2.2)))/4)=((5±3)/4)=(1/2);2  t=((3/2))^x ⇒x=log_(3/2) t=((log_2 t)/(log_2 3−1))  t≥0  x_1 =((log_2 (1/2))/(log_2 3−1))=(1/(1−log_2 3))  x_2 =((log_2 2)/(log_2 3−1))=(1/(log_2 3−1))    x=(1/(log_2 3−1));(1/(1−log_2 3))

32x+33x=2(3/2)x2x+2(3/2)x3x32(3/2)x2x=2(3/2)x33x(32)x(32(32)x)=2(32)x3t=(32)xt(32t)=2t33t22t3+3t2=02t33t23t+2=02(t3+1)3t(t+1)=02(t+1)(t2t+1)3t(t+1)=0(t+1)(2t25t+2)=0t1=1t2,3=5±254.2.24=5±34=12;2t=(32)xx=log3/2t=log2tlog231t0x1=log212log231=11log23x2=log22log231=1log231x=1log231;11log23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com