Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16595 by ajfour last updated on 24/Jun/17

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 25/Jun/17

you are wellcome dear mr Ajfour.please   post your answer.i am waiting for it.

youarewellcomedearmrAjfour.pleasepostyouranswer.iamwaitingforit.

Commented by ajfour last updated on 24/Jun/17

A point M lies inside an ∠AOB ;  ∠MOA=α , ∠MOB=β , OM=a   (α+β < π). Find radius of a circle  passing through M and cutting off,  on sides OA and OB of the given  angle, chords of length 2a .

ApointMliesinsideanAOB;MOA=α,MOB=β,OM=a(α+β<π).FindradiusofacirclepassingthroughMandcuttingoff,onsidesOAandOBofthegivenangle,chordsoflength2a.

Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 26/Jun/17

oC=x,oD=y,′P′center of circle.α+β=ϕ  C,is the intersect of oB with circle.  D,is the intersect of oA with circle.  N,is the intersect of oM with circle   when continued.  op^2 −R^2 =oD.oA=y(2a+y)  op^2 −R^2 =oC.o.B=x(2a+x)  ⇒y(2a+y)=x(2a+x)⇒x^2 −y^2 +2a(x−y)=0  ⇒(x−y)(x+y+2a)=0⇒x=y=oC=oD.  CD^2 =2x^2 −2x^2 cosϕ=4x^2 sin^2 (ϕ/2)⇒  CD=2x.sin(ϕ/2)  AB^2 =(x+2a)^2 +(y+2a)^2 −2(x+2a)(y+2a)cosϕu⇒  AB=2(x+2a)sin(ϕ/2)  BD^2 =x^2 +(x+2a)^2 −2x(x+2a)cosϕ=  =2x^2 +4a^2 +4ax−2x^2 cosϕ−4axcosϕ=  =2(x^2 −2ax)(1−cosϕ)+4a^2 =  =4(x^2 +2ax)sin^2 (ϕ/2)+4a^2   ⇒BD=2(√(a^2 +(x^2 +2ax)sin^2 (ϕ/2)))  CA=2(√(a^2 +(x^2 +2ax)sin^2 (ϕ/2)))  DM^2 =a^2 +x^2 −2axcosα  CM^2 =a^2 +x^2 −2axcosβ  AM^2 =a^2 +(2a+x)^2 −2x(2a+x)cosα  (x+2a)(DM^2 +2ax)=2a.a^2 +x.AM^2   (x+2a)(a^2 +x^2 −2axcosα+2ax)=2a^3 +x[a^2 +(2a+x)^2 −2x(2a+x)cosα]⇒  xa^2 +x^3 −2ax^2 cosα+2ax^2 +2a^3 +2ax^2 −4a^2 xcosα+4a^2 x=  =2a^3 +xa^2 +x(2a+x)^2 −2x^2 (2a+x)cosα  ⇒−2ax^2 cosα−2x^3 cosα+4a^2 xcosα=0  ⇒x^2 +ax−2a^2 =0⇒x=((−a±(√(a^2 +8a^2 )))/2)  ⇒x=y=((−a+3a)/2)=a  CD=2asin(ϕ/2),AB=6asin(ϕ/2),  BD=CA=2a(√(1+3sin^2 (ϕ/2)))  DM=2asin(α/2),CM=2asin(β/2)  a^2 =a^2 +DM^2 −2a.DM.cos(oDM)  ⇒cos(oDM)=((DM)/(2a))=((2asin(α/2))/(2a))=sin(α/2)  ⇒oDM=(π/2)−(α/2)  MB^2 =MD^2 +BD^2 −2MD.BD.cos(MDB)  MB^2 =a^2 +9a^2 −6a^2 cosβ=2a^2 (5−3cosβ)  10a^2 −6a^2 cosβ=4a^2 sin^2 (α/2)+4a^2 (1+3sin^2 (ϕ/2))−8a^2 sin(α/2)(√(1+3sin^2 (ϕ/2))).cos(MDB)  2a^2 −6a^2 cosβ+2a^2 cosα−6a^2 cos(α+β)=−8a^2 sin(α/2)(√(1+3sin^2 ((α+β)/2))).cos(MDB)  ⇒^ cos(MDB)=(√2).((3cos(α+β)+3cosβ−cosα−1)/(2sin(α/2).(√(5−3cos(α+β)))))

oC=x,oD=y,Pcenterofcircle.α+β=φC,istheintersectofoBwithcircle.D,istheintersectofoAwithcircle.N,istheintersectofoMwithcirclewhencontinued.op2R2=oD.oA=y(2a+y)op2R2=oC.o.B=x(2a+x)y(2a+y)=x(2a+x)x2y2+2a(xy)=0(xy)(x+y+2a)=0x=y=oC=oD.CD2=2x22x2cosφ=4x2sin2φ2CD=2x.sinφ2AB2=(x+2a)2+(y+2a)22(x+2a)(y+2a)cosφuAB=2(x+2a)sinφ2BD2=x2+(x+2a)22x(x+2a)cosφ==2x2+4a2+4ax2x2cosφ4axcosφ==2(x22ax)(1cosφ)+4a2==4(x2+2ax)sin2φ2+4a2BD=2a2+(x2+2ax)sin2φ2CA=2a2+(x2+2ax)sin2φ2DM2=a2+x22axcosαCM2=a2+x22axcosβAM2=a2+(2a+x)22x(2a+x)cosα(x+2a)(DM2+2ax)=2a.a2+x.AM2(x+2a)(a2+x22axcosα+2ax)=2a3+x[a2+(2a+x)22x(2a+x)cosα]xa2+x32ax2cosα+2ax2+2a3+2ax24a2xcosα+4a2x==2a3+xa2+x(2a+x)22x2(2a+x)cosα2ax2cosα2x3cosα+4a2xcosα=0x2+ax2a2=0x=a±a2+8a22x=y=a+3a2=aCD=2asinφ2,AB=6asinφ2,BD=CA=2a1+3sin2φ2DM=2asinα2,CM=2asinβ2a2=a2+DM22a.DM.cos(oDM)cos(oDM)=DM2a=2asinα22a=sinα2oDM=π2α2MB2=MD2+BD22MD.BD.cos(MDB)MB2=a2+9a26a2cosβ=2a2(53cosβ)10a26a2cosβ=4a2sin2α2+4a2(1+3sin2φ2)8a2sinα21+3sin2φ2.cos(MDB)2a26a2cosβ+2a2cosα6a2cos(α+β)=8a2sinα21+3sin2α+β2.cos(MDB)cos(MDB)=2.3cos(α+β)+3cosβcosα12sinα2.53cos(α+β)

Commented by ajfour last updated on 25/Jun/17

 huge will and effort Sir, should  i mention the answer ?

hugewillandeffortSir,shouldimentiontheanswer?

Answered by ajfour last updated on 25/Jun/17

R=a(√(1+4((cos^2 (((α−β)/2))sin^2 (((α+β)/2)))/(cos^4 (((α+β)/2))))))

R=a1+4cos2(αβ2)sin2(α+β2)cos4(α+β2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com