Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 166617 by mr W last updated on 23/Feb/22

Commented by mr W last updated on 23/Feb/22

three circles with radii a, b, c   touch each other as shown.   find the maximum side length of   the equilateral triangle whose   vertices lie on the three circles.

threecircleswithradiia,b,ctoucheachotherasshown.findthemaximumsidelengthoftheequilateraltrianglewhoseverticeslieonthethreecircles.

Answered by ajfour last updated on 25/Feb/22

Answered by mr W last updated on 20/Mar/22

Commented by mr W last updated on 22/Mar/22

area of ABC Δ=(√(abc(a+b+c)))  incircle radius r=(Δ/(a+b+c))=(√((abc)/(a+b+c)))  α′=2 tan^(−1) (r/a)  β′=2 tan^(−1) (r/b)  γ′=2 tan^(−1) (r/c)  PQ=s:  s^2 =[a+b+a cos (α+α′)+b cos β]^2 +[a sin (α+α′)+b sin β]^2   s^2 =(a+b)^2 +a^2 +b^2 +2a(a+b)cos (α+α′)+2b(a+b) cos β+2ab[cos (α+α′)cos β+ sin (α+α′) sin β]  (s^2 /2)−(a^2 +b^2 +ab)=(a+b)[a cos (α+α′)+b cos β]+ab[cos (α+α′)cos β+ sin (α+α′) sin β]  (s^2 /2)−(a^2 +b^2 +ab)−a(a+b)cos (α+α′)=b{[a+b+a cos (α+α′)]cos β+a sin (α+α′) sin β}  (s^2 /2)−(a^2 +b^2 +ab)−a(a+b)cos (α+α′)=b(√((a+b)^2 +a^2 +2a(a+b)cos (α+α′))) sin [β+tan^(−1) ((a+b+a cos (α+α′))/(a sin (α+α′)))]   determinant (((β=−tan^(−1) ((a+b+a cos (α+α′))/(a sin (α+α′)))+sin^(−1) (((s^2 /2)−(a^2 +b^2 +ab)−a(a+b)cos (α+α′))/(b(√((a+b)^2 +a^2 +2a(a+b)cos (α+α′))))) )))  similarly  RP=s:  (s^2 /2)−(c^2 +a^2 +ca)=(c+a)[c cos (γ+γ′)+a cos α]+ca[cos (γ+γ′)cos α+ sin (γ+γ′) sin α]  (s^2 /2)−(c^2 +a^2 +ca)−a(c+a)cos α=c{(c+a+a cos α) cos (γ+γ′)+a sin (γ+γ′) sin α}  (s^2 /2)−(c^2 +a^2 +ca)−a(c+a)cos α=c(√((c+a)^2 +a^2 +2a(c+a)cos α)) sin (γ+γ′+tan^(−1) ((c+a+a cos α)/(a sin α)))   determinant (((γ=−γ′−tan^(−1) ((c+a+a cos α)/(a sin α))+sin^(−1) (((s^2 /2)−(c^2 +a^2 +ca)−a(c+a)cos α)/(c(√((c+a)^2 +a^2 +2a(c+a)cos α)))))))  similarly  QR=s:  (s^2 /2)−(b^2 +c^2 +bc)=(b+c)[b cos (β+β′)+c cos γ]+bc cos (β+β′−γ)   determinant ((((s^2 /(2bc))−((b/c)+(c/b)+1)=(b+c)[((cos (β+β′))/c)+((cos γ)/b)]+cos (β+β′−γ))))

areaofABCΔ=abc(a+b+c)incircleradiusr=Δa+b+c=abca+b+cα=2tan1raβ=2tan1rbγ=2tan1rcPQ=s:s2=[a+b+acos(α+α)+bcosβ]2+[asin(α+α)+bsinβ]2s2=(a+b)2+a2+b2+2a(a+b)cos(α+α)+2b(a+b)cosβ+2ab[cos(α+α)cosβ+sin(α+α)sinβ]s22(a2+b2+ab)=(a+b)[acos(α+α)+bcosβ]+ab[cos(α+α)cosβ+sin(α+α)sinβ]s22(a2+b2+ab)a(a+b)cos(α+α)=b{[a+b+acos(α+α)]cosβ+asin(α+α)sinβ}s22(a2+b2+ab)a(a+b)cos(α+α)=b(a+b)2+a2+2a(a+b)cos(α+α)sin[β+tan1a+b+acos(α+α)asin(α+α)]β=tan1a+b+acos(α+α)asin(α+α)+sin1s22(a2+b2+ab)a(a+b)cos(α+α)b(a+b)2+a2+2a(a+b)cos(α+α)similarlyRP=s:s22(c2+a2+ca)=(c+a)[ccos(γ+γ)+acosα]+ca[cos(γ+γ)cosα+sin(γ+γ)sinα]s22(c2+a2+ca)a(c+a)cosα=c{(c+a+acosα)cos(γ+γ)+asin(γ+γ)sinα}s22(c2+a2+ca)a(c+a)cosα=c(c+a)2+a2+2a(c+a)cosαsin(γ+γ+tan1c+a+acosαasinα)γ=γtan1c+a+acosαasinα+sin1s22(c2+a2+ca)a(c+a)cosαc(c+a)2+a2+2a(c+a)cosαsimilarlyQR=s:s22(b2+c2+bc)=(b+c)[bcos(β+β)+ccosγ]+bccos(β+βγ)s22bc(bc+cb+1)=(b+c)[cos(β+β)c+cosγb]+cos(β+βγ)

Commented by mr W last updated on 20/Mar/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com