Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 166779 by ajfour last updated on 27/Feb/22

Answered by mr W last updated on 27/Feb/22

Commented by mr W last updated on 28/Feb/22

A′(h,a)  B′(b,k)  (h−b)^2 +(k−a)^2 =(a+b)^2   k^2 −2ak+h^2 −2b(h+a)=0  ⇒k=a+(√((a+2b−h)(h+a)))  x_A =(s/2)((√3)cos θ+sin θ)  y_A =(s/2)((√3)sin θ−cos θ)  x_B =(s/2)((√3)cos θ−sin θ)  y_B =(s/2)((√3)sin θ+cos θ)  ((s/2)((√3)cos θ+sin θ)−h)^2 +((s/2)((√3)sin θ−cos θ)−a)^2 =a^2   s^2 −[((√3)h−a)cos θ+((√3)a+h)sin θ]s+h^2 =0   ...(i)  ((s/2)((√3)cos θ−sin θ)−b)^2 +((s/2)((√3)sin θ+cos θ)−k)^2 =b^2   s^2 −[((√3)b+k)cos θ+((√3)k−b)sin θ]s+k^2 =0   ...(ii)    ((√3)h−a)cos θ+((√3)a+h)sin θ=((s^2 +h^2 )/s)  cos (θ−tan^(−1) (((√3)a+h)/( (√3)h−a)))=((s^2 +h^2 )/( 2s(√(h^2 +a^2 ))))  ⇒θ=tan^(−1) (((√3)a+h)/( (√3)h−a))+cos^(−1) ((s^2 +h^2 )/( 2s(√(h^2 +a^2 ))))    s^2 −2s(√(k^2 +b^2 )) cos (θ−tan^(−1) (((√3)k−b)/( (√3)b+k)))+k^2 =0  s^2 −2s(√(k^2 +b^2 )) cos (cos^(−1) ((s^2 −h^2 )/( 2s(√(h^2 +a^2 ))))+tan^(−1) (((√3)a+h)/( (√3)h−a))−tan^(−1) (((√3)k−b)/( (√3)b+k)))+k^2 =0  ...

A(h,a)B(b,k)(hb)2+(ka)2=(a+b)2k22ak+h22b(h+a)=0k=a+(a+2bh)(h+a)xA=s2(3cosθ+sinθ)yA=s2(3sinθcosθ)xB=s2(3cosθsinθ)yB=s2(3sinθ+cosθ)(s2(3cosθ+sinθ)h)2+(s2(3sinθcosθ)a)2=a2s2[(3ha)cosθ+(3a+h)sinθ]s+h2=0...(i)(s2(3cosθsinθ)b)2+(s2(3sinθ+cosθ)k)2=b2s2[(3b+k)cosθ+(3kb)sinθ]s+k2=0...(ii)(3ha)cosθ+(3a+h)sinθ=s2+h2scos(θtan13a+h3ha)=s2+h22sh2+a2θ=tan13a+h3ha+cos1s2+h22sh2+a2s22sk2+b2cos(θtan13kb3b+k)+k2=0s22sk2+b2cos(cos1s2h22sh2+a2+tan13a+h3hatan13kb3b+k)+k2=0...

Commented by ajfour last updated on 28/Feb/22

(h−scos α)^2 +(a−ssin α)^2 =a^2   (b−ssin β)^2 +(k−scos β)^2 =b^2   ⇒    h=scos α+(√(a^2 −(a−ssin α)^2 ))    k=scos β+(√(b^2 −(b−ssin β)^2 ))  α+β=(π/6)  ; α−β=2θ  ⇒  α=(π/(12))+θ  ,  β=(π/(12))−θ  (h−b)^2 +(k−a)^2 =(a+b)^2   ⇒  {scos ((π/(12))+θ) −b+(√(a^2 −[a−ssin ((π/(12))+θ)]^2 ))}^2   +{scos ((π/(12))−θ)−a+(√(b^2 −[b−ssin ((π/(12))−θ)]^2 ))}^2       =(a+b)^2

(hscosα)2+(assinα)2=a2(bssinβ)2+(kscosβ)2=b2h=scosα+a2(assinα)2k=scosβ+b2(bssinβ)2α+β=π6;αβ=2θα=π12+θ,β=π12θ(hb)2+(ka)2=(a+b)2{scos(π12+θ)b+a2[assin(π12+θ)]2}2+{scos(π12θ)a+b2[bssin(π12θ)]2}2=(a+b)2

Commented by mr W last updated on 28/Feb/22

very nice way!

veryniceway!

Commented by Tawa11 last updated on 28/Feb/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com