Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 166822 by ajfour last updated on 28/Feb/22

Answered by mr W last updated on 28/Feb/22

Commented by mr W last updated on 28/Feb/22

OA^2 =1^2 +(1+(1/(tan (θ/2))))^2   cos θ=((1/(tan  (θ/2)))/(1+(√(1+(1+(1/(tan (θ/2))))^2 ))))  ⇒θ≈65.444°

OA2=12+(1+1tanθ2)2cosθ=1tanθ21+1+(1+1tanθ2)2θ65.444°

Commented by ajfour last updated on 01/Mar/22

((1−t^2 )/(1+t^2 ))=(1/(t+(√(t^2 +(t+1)^2 ))))=(((√(t^2 +(t+1)^2 ))−t)/((t+1)^2 ))  ⇒ {(1−t^2 )(t+1)^2 +t(1+t^2 )}^2        =(1+t^2 )^2 {t^2 +(t+1)^2 }    ⇒ (1−t^2 )^2 (t+1)^4 +t^2 (1+t^2 )^2      +2t(1−t^2 )(1+t^2 )(t+1)^2       =t^2 (1+t^2 )^2 +(t+1)^2 (1+t^2 )^2   ⇒  (1−t^2 )^2 (t+1)^2 +2t(1−t^4 )=(1+t^2 )^2   ⇒ t^6 −2t^4 +t^2 +2t−4t^3 +2t^5       +1−2t^2 +t^4 +2t−2t^5 =1+t^4 +2t^2   ⇒  t^5 −2t^3 −4t^2 −3t+4=0  t=tan (θ/2)≈0.6425  ⇒  θ ≈ 65.44°

1t21+t2=1t+t2+(t+1)2=t2+(t+1)2t(t+1)2{(1t2)(t+1)2+t(1+t2)}2=(1+t2)2{t2+(t+1)2}(1t2)2(t+1)4+t2(1+t2)2+2t(1t2)(1+t2)(t+1)2=t2(1+t2)2+(t+1)2(1+t2)2(1t2)2(t+1)2+2t(1t4)=(1+t2)2t62t4+t2+2t4t3+2t5+12t2+t4+2t2t5=1+t4+2t2t52t34t23t+4=0t=tanθ20.6425θ65.44°

Commented by Tawa11 last updated on 01/Mar/22

Great sirs

Greatsirs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com