All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 167267 by mnjuly1970 last updated on 11/Mar/22
Answered by mindispower last updated on 15/Mar/22
IBP⇒Ω=[ln(1+x)Li2(1−x)]01−∫01ln(1+x)ln(x)1−xdx=−∫01ln(x)ln(1+x)1−xdxln(1+x)=∑j⩾0(−1)jj+1xj+111−x=∑k⩾0xkln(1+x)1−x=∑n⩾0∑nm=0(−1)mm+1xn+1=S∑nm=0(−1)mm+1=−H−n+1S=−∑n⩾0H−n+1xn+1=−∑n⩾1HnxnΩ=−∑n⩾1∫01H−nxnln(x)dx=∑n⩾1H−n(n+1)2=∑n⩾1H−n+1+(−1)nn+1(n+1)2=∑n⩾1H−n+1(n+1)2+∑n⩾1(−1)n(n+1)3=∑n⩾1H−nn2−η(3)=Ω∑n⩾1H−nnq+1=ζ(q)ln(2)−q2ζ(q+1)+η(q+1)+∑qk=1η(k)η(q+1−k)EulerformulaForharomincsumΩ=ζ(2)ln(2)−ζ(3)+η(3)+η(1)η(2)−η(3)=ζ(2)ln(2)−ζ(3)+12ln(2)ζ(2)=32ln(2).π26−ζ(3)=π24ln(2)−ζ(3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com