Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 167267 by mnjuly1970 last updated on 11/Mar/22

Answered by mindispower last updated on 15/Mar/22

IBP⇒Ω=[ln(1+x)Li_2 (1−x)]_0 ^1 −∫_0 ^1 ((ln(1+x)ln(x))/(1−x))dx  =−∫_0 ^1 ((ln(x)ln(1+x))/(1−x))dx  ln(1+x)=Σ_(j≥0) (((−1)^j )/(j+1))x^(j+1)   (1/(1−x))=Σ_(k≥0) x^k   ((ln(1+x))/(1−x))=Σ_(n≥0) Σ_(m=0) ^n (((−1)^m )/(m+1))x^(n+1) =S  Σ_(m=0) ^n (((−1)^m )/(m+1))=−H_(n+1) ^−   S=−Σ_(n≥0) H_(n+1) ^− x^(n+1) =−Σ_(n≥1) H_n x^n   Ω=−Σ_(n≥1) ∫_0 ^1 H_n ^− x^n ln(x)dx  =Σ_(n≥1) (H_n ^− /((n+1)^2 ))=Σ_(n≥1) ((H_(n+1) ^− +(((−1)^n )/(n+1)))/((n+1)^2 ))  =Σ_(n≥1) (H_(n+1) ^− /((n+1)^2 ))+Σ_(n≥1) (((−1)^n )/((n+1)^3 ))  =Σ_(n≥1) (H_n ^− /n^2 )−η(3)=Ω  Σ_(n≥1) (H_n ^− /n^(q+1) )=ζ(q)ln(2)−(q/2)ζ(q+1)+η(q+1)+Σ_(k=1) ^q η(k)η(q+1−k)  Euler formula For harominc sum  Ω=ζ(2)ln(2)−ζ(3)+η(3)+η(1)η(2)−η(3)  =ζ(2)ln(2)−ζ(3)+(1/2)ln(2)ζ(2)  =(3/2_ )ln(2).(π^2 /6)−ζ(3)  =(π^2 /4)ln(2)−ζ(3)

IBPΩ=[ln(1+x)Li2(1x)]0101ln(1+x)ln(x)1xdx=01ln(x)ln(1+x)1xdxln(1+x)=j0(1)jj+1xj+111x=k0xkln(1+x)1x=n0nm=0(1)mm+1xn+1=Snm=0(1)mm+1=Hn+1S=n0Hn+1xn+1=n1HnxnΩ=n101Hnxnln(x)dx=n1Hn(n+1)2=n1Hn+1+(1)nn+1(n+1)2=n1Hn+1(n+1)2+n1(1)n(n+1)3=n1Hnn2η(3)=Ωn1Hnnq+1=ζ(q)ln(2)q2ζ(q+1)+η(q+1)+qk=1η(k)η(q+1k)EulerformulaForharomincsumΩ=ζ(2)ln(2)ζ(3)+η(3)+η(1)η(2)η(3)=ζ(2)ln(2)ζ(3)+12ln(2)ζ(2)=32ln(2).π26ζ(3)=π24ln(2)ζ(3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com