Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 168852 by bagjagugum123 last updated on 19/Apr/22

Commented by CAIMAN last updated on 19/Apr/22

3π/8

Commented by safojontoshtemirov last updated on 20/Apr/22

solution.Safojon.Toshtemirov.  ∫_0 ^∞ ((sin^n x)/x^n )dx=  y=x^n   x=y^(1/n)    dx=(y^((1/n)−1) /n)dy  (1/n)∫_0 ^∞ ((y^((1/n)−1) ∙siny)/y)dy=(1/n)∫_0 ^∞ y^((1/n)−2) ∙sinydy=  (1/((1−(1/n))!))∫_0 ^∞ ζ_t ^n {(((1−(1/n))!)/s^(1+(1−(1/n))) )}(y)ζ_t (sint)(y)dy  (1/(n(1−(1/n))!))∫_0 ^∞ (y^(1−(1/n)) /(1+y^2 ))dy=(1/(2n(1−(1/n))!))∫_0 ^∞ (y^((1−(1/(2n)))−1) /(y+1))dy  =((Γ(1−(1/(2n)))Γ((1/(2n))))/(2n(1−(1/n))!))=((π∙(1/(sin(π/(2n)))))/(2n(1−(1/n))!))  n=3  ∫_0 ^∞ ((sin^3 x)/x^3 )dx=((π∙2)/(6∙((2/3))!))=(π/(3∙((2/3))!))

solution.Safojon.Toshtemirov.0sinnxxndx=y=xnx=y1ndx=y1n1ndy1n0y1n1sinyydy=1n0y1n2sinydy=1(11n)!0ζtn{(11n)!s1+(11n)}(y)ζt(sint)(y)dy1n(11n)!0y11n1+y2dy=12n(11n)!0y(112n)1y+1dy=Γ(112n)Γ(12n)2n(11n)!=π1sinπ2n2n(11n)!n=30sin3xx3dx=π26(23)!=π3(23)!

Commented by botir last updated on 20/Apr/22

veru solution laplas

verusolutionlaplas

Terms of Service

Privacy Policy

Contact: info@tinkutara.com