All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 168852 by bagjagugum123 last updated on 19/Apr/22
Commented by CAIMAN last updated on 19/Apr/22
3π/8
Commented by safojontoshtemirov last updated on 20/Apr/22
solution.Safojon.Toshtemirov.∫∞0sinnxxndx=y=xnx=y1ndx=y1n−1ndy1n∫∞0y1n−1⋅sinyydy=1n∫∞0y1n−2⋅sinydy=1(1−1n)!∫∞0ζtn{(1−1n)!s1+(1−1n)}(y)ζt(sint)(y)dy1n(1−1n)!∫∞0y1−1n1+y2dy=12n(1−1n)!∫∞0y(1−12n)−1y+1dy=Γ(1−12n)Γ(12n)2n(1−1n)!=π⋅1sinπ2n2n(1−1n)!n=3∫∞0sin3xx3dx=π⋅26⋅(23)!=π3⋅(23)!
Commented by botir last updated on 20/Apr/22
verusolutionlaplas
Terms of Service
Privacy Policy
Contact: info@tinkutara.com