All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 168894 by mnjuly1970 last updated on 20/Apr/22
Commented by mahdipoor last updated on 20/Apr/22
∫112(3−xx2+x+x−2x2+2x+4)dx=∫dx(x2+x)(x2+2x+4)=∫d(lnx)(x+1)(x2+2x+4)=lnx(x+1)(x2+2x+4)+2∫(lnx)dx(x2+2x+4)2
Answered by Mathspace last updated on 21/Apr/22
f(a)=∫0∞lnxx2+2x+a2dx(a>1)f′(a)=−2a∫0∞lnx(x2+2x+a2)2dx⇒∫0∞lnx(x2+2x+a2)2dx=−12af′(a)and∫0∞lnx(x2+2x+4)2dx=−14f′(2)f(a)=−12Re(ΣRes(Ψ,ai))Ψ(z)=ln2zx2+2x+a2Δ′=1−a2⇒z1=−1+ia2−1z2=−1−ia2−1Ψ(z)=ln2z(z−z1)(z−z2)Res(Ψ,z1)=ln2(z1)z1−z2z1=a⇒z1=ae−iarctan(a2−1)⇒(lnz1)2=(lna−iarctan(a2−1)2=ln2a−2ilnaarctan(a2−1)+arctan2(a2−1)1⇒Res(Ψ,z1)=ln2a−2ilnaarctan(a2−1)+arcta2(a2−1)2ia2−1...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com