Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 168921 by Shrinava last updated on 21/Apr/22

Answered by mr W last updated on 22/Apr/22

Commented by Tawa11 last updated on 22/Apr/22

Great sir.

Greatsir.

Commented by mr W last updated on 22/Apr/22

say BC=a, DE=b  let BD=c  c^2 =a^2 +b^2 −2ab cos (π−θ−(π/3))  c^2 =a^2 +b^2 +ab(cos θ−(√3) sin θ)  ((sin ∠ABD)/(AD))=((sin (θ+(π/3)))/(BD))  ⇒sin ∠ABD=((b sin (θ+(π/3)))/c)  cos ∠ABD=((a^2 +c^2 −b^2 )/(2ac))    AF^2 =a^2 +c^2 −2ac cos (∠ABD+(π/3))  AF^2 =a^2 +c^2 −ac (cos ∠ABD−(√3) sin ∠ABD)  AF^2 =a^2 +c^2 −ac cos ∠ABD+(√3) ab sin (θ+(π/3))]  AF^2 =a^2 +c^2 −ac×((a^2 +c^2 −b^2 )/(2ac))+(√3) ab sin (θ+(π/3))]  AF^2 =((a^2 +b^2 +c^2 )/2)+(√3) ab sin (θ+(π/3))  AF^2 =((a^2 +b^2 +a^2 +b^2 +ab(cos θ−(√3) sin θ))/2)+((√3)/2)ab (sin θ+(√3) cos θ)  AF^2 =a^2 +b^2 +2ab cos θ  AF=(√(a^2 +b^2 +2ab cos θ))  replace θ with −θ we get  AG=(√(a^2 +b^2 +2ab cos (−θ)))  AG=(√(a^2 +b^2 +2ab cos θ))  i.e. AF=AG  it can also be shown that F,A,G  are collinear.  FG=AF+AG=2(√(a^2 +b^2 +2ab cos θ))         ≤2(√(a^2 +b^2 +2ab))=2(a+b)  i.e. 2(BC+DE)≥FG

sayBC=a,DE=bletBD=cc2=a2+b22abcos(πθπ3)c2=a2+b2+ab(cosθ3sinθ)sinABDAD=sin(θ+π3)BDsinABD=bsin(θ+π3)ccosABD=a2+c2b22acAF2=a2+c22accos(ABD+π3)AF2=a2+c2ac(cosABD3sinABD)AF2=a2+c2accosABD+3absin(θ+π3)]AF2=a2+c2ac×a2+c2b22ac+3absin(θ+π3)]AF2=a2+b2+c22+3absin(θ+π3)AF2=a2+b2+a2+b2+ab(cosθ3sinθ)2+32ab(sinθ+3cosθ)AF2=a2+b2+2abcosθAF=a2+b2+2abcosθreplaceθwithθwegetAG=a2+b2+2abcos(θ)AG=a2+b2+2abcosθi.e.AF=AGitcanalsobeshownthatF,A,Garecollinear.FG=AF+AG=2a2+b2+2abcosθ2a2+b2+2ab=2(a+b)i.e.2(BC+DE)FG

Commented by Shrinava last updated on 23/Apr/22

Cool dear sir

Cooldearsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com