Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 168926 by mr W last updated on 22/Apr/22

Commented by mr W last updated on 22/Apr/22

M=midpoint of Aa  L=midpoint of Bb  K=midpoint of Cc  prove   1. Δ_(abc) =4Δ_(MLK)   2. ab+bc+ca≤2(ML+LK+KM)

M=midpointofAaL=midpointofBbK=midpointofCcprove1.Δabc=4ΔMLK2.ab+bc+ca2(ML+LK+KM)

Commented by mr W last updated on 22/Apr/22

related to Q168606

relatedtoQ168606

Answered by mr W last updated on 22/Apr/22

Part I  AH=((Ac)/(sin B))=((b cos A)/(sin B))=((2R sin B cos A)/(sin B))=2R cos A  similarly  BH=2R cos B  CH=2R cos C    Ha=((Ba)/(tan C))=((c cos B)/(tan C))=((2R sin C cos B)/(tan C))=2R cos B cos C  similarly  Hb=2R cos C cos A  Hc=2R cos A cos B    HM=AH−((AH+Ha)/2)=(1/2)(AH−Ha)  =R(cos A−cos B cos C)  HL=BH−((BH+Hb)/2)=(1/2)(BH−Hb)  =R(cos B−cos C cos A)  HK=CH−((CH+Hc)/2)=(1/2)(CH−Hc)  =R(cos C−cos A cos B)    2Δ_(abc) =HM×HL×sin C+HL×HK×sin A+HK×HM×sin B  2Δ_(abc) =4R^2 (cos B cos C×cos C cos A×sin C+cos C cos A×cos A cos B×sin A+cos A cos B×cos B cos C×sin B)  Δ_(abc) =R^2 cos A cos B cos C(sin 2A+sin 2B+sin 2C)  Δ_(abc) =4R^2 cos A cos B cos C sin A sin B sin C  ⇒Δ_(abc) =(R^2 /2) sin 2A sin 2B sin 2C    2Δ_(MLK) =HM×HL×sin C+HL×HK×sin A+HK×HM×sin B  (2/R^2 )Δ_(MLK) =(cos A−cos B cos C)(cos B−cos C cos A)sin C+(cos B−cos C cos A)(cos C−cos A cos B)sin A+(cos C−cos A cos B)(cos A−cos B cos C)sin B  (2/R^2 )Δ_(MLK) =cos A cos B cos C (tan A+tan B+tan C)−(1/2)(sin 2A+sin 2B+sin 2C)−(1/4)(cos 2A sin 2C+cos 2B  sin 2C+cos 2B sin 2A+cos 2C sin 2A+cos 2C sin 2B+cos 2A sin 2B)+(1/2)cos A cos B cos C (sin 2A+sin 2B+sin 2C)  (2/R^2 )Δ_(MLK) =cos A cos B cos C (tan A+tan B+tan C)−(1/2)(sin 2A+sin 2B+sin 2C)−(1/4)[sin 2(A+C)+sin 2(B+C)+ sin 2(A+B)]+(1/2)cos A cos B cos C (sin 2A+sin 2B+sin 2C)  (2/R^2 )Δ_(MLK) =cos A cos B cos C tan A tan B tan C−(1/2)(sin 2A+sin 2B+sin 2C)+(1/4)(sin 2A+sin 2B+ sin 2C)+(1/2)cos A cos B cos C (sin 2A+sin 2B+sin 2C)  (2/R^2 )Δ_(MLK) =sin A sin B sin C−sin A sin B sin C+2cos A cos B cos C sin A sin B sin C  (2/R^2 )Δ_(MLK) =(1/4)sin 2A sin 2B sin 2C  ⇒Δ_(MLK) =(R^2 /8)sin 2A sin 2B sin 2C  ⇒Δ_(abc) =4Δ_(MLK)

PartIAH=AcsinB=bcosAsinB=2RsinBcosAsinB=2RcosAsimilarlyBH=2RcosBCH=2RcosCHa=BatanC=ccosBtanC=2RsinCcosBtanC=2RcosBcosCsimilarlyHb=2RcosCcosAHc=2RcosAcosBHM=AHAH+Ha2=12(AHHa)=R(cosAcosBcosC)HL=BHBH+Hb2=12(BHHb)=R(cosBcosCcosA)HK=CHCH+Hc2=12(CHHc)=R(cosCcosAcosB)2Δabc=HM×HL×sinC+HL×HK×sinA+HK×HM×sinB2Δabc=4R2(cosBcosC×cosCcosA×sinC+cosCcosA×cosAcosB×sinA+cosAcosB×cosBcosC×sinB)Δabc=R2cosAcosBcosC(sin2A+sin2B+sin2C)Δabc=4R2cosAcosBcosCsinAsinBsinCΔabc=R22sin2Asin2Bsin2C2ΔMLK=HM×HL×sinC+HL×HK×sinA+HK×HM×sinB2R2ΔMLK=(cosAcosBcosC)(cosBcosCcosA)sinC+(cosBcosCcosA)(cosCcosAcosB)sinA+(cosCcosAcosB)(cosAcosBcosC)sinB2R2ΔMLK=cosAcosBcosC(tanA+tanB+tanC)12(sin2A+sin2B+sin2C)14(cos2Asin2C+cos2Bsin2C+cos2Bsin2A+cos2Csin2A+cos2Csin2B+cos2Asin2B)+12cosAcosBcosC(sin2A+sin2B+sin2C)2R2ΔMLK=cosAcosBcosC(tanA+tanB+tanC)12(sin2A+sin2B+sin2C)14[sin2(A+C)+sin2(B+C)+sin2(A+B)]+12cosAcosBcosC(sin2A+sin2B+sin2C)2R2ΔMLK=cosAcosBcosCtanAtanBtanC12(sin2A+sin2B+sin2C)+14(sin2A+sin2B+sin2C)+12cosAcosBcosC(sin2A+sin2B+sin2C)2R2ΔMLK=sinAsinBsinCsinAsinBsinC+2cosAcosBcosCsinAsinBsinC2R2ΔMLK=14sin2Asin2Bsin2CΔMLK=R28sin2Asin2Bsin2CΔabc=4ΔMLK

Commented by mr W last updated on 21/Apr/22

following theorems are used:  (a/(sin A))=(b/(sin B))=(c/(sin C))=2R  sin 2A+sin 2B+sin 2C=4 sin A sin B sin C  tan A+tan B+tan C=tan A tan B tan C

followingtheoremsareused:asinA=bsinB=csinC=2Rsin2A+sin2B+sin2C=4sinAsinBsinCtanA+tanB+tanC=tanAtanBtanC

Commented by Tawa11 last updated on 21/Apr/22

Great sir.

Greatsir.

Answered by mr W last updated on 23/Apr/22

Part II  Ca=b cos C=2R cos B cos C  Cb=a cos C=2R cos A cos C  (ab)^2 =(2R cos B cos C)^2 +(2R cos A cos C)^2 +2×2R cos B cos C×2R cos A cos C×cos C  (((ab)^2 )/(4R^2 ))=(cos^2  A+cos^2  B+cos^2  C+2 cos A cos B cos C−cos^2  C)cos^2  C  (((ab)^2 )/(4R^2 ))=(3−sin^2  A−sin^2  B−sin^2  C+2 cos A cos B cos C−cos^2  C)cos^2  C  (((ab)^2 )/(4R^2 ))=sin^2  C cos^2  C  ⇒ab=R sin 2C  ab+bc+ca=R(sin 2A+sin 2B+sin 2C)  ⇒ab+bc+ca=4R sin A sin B sin C    LK^2 =R^2 (cos B−cos C cos A)^2 +R^2 (cos C−cos A cos B)^2 +2R^2 (cos B−cos C cos A)(cos C−cos A cos B)cos A  ((LK^2 )/R^2 )=(cos B−cos C cos A)^2 +(cos C−cos A cos B)^2 +2(cos B−cos C cos A)(cos C−cos A cos B)cos A  ((LK^2 )/R^2 )= sin^2  A(cos^2  B+cos^2  C−2 cos A cos B cos C)  ((LK^2 )/R^2 )= sin^2  A(3−sin^2  A−sin^2  B−sin^2  C−2 cos A cos B cos C−cos^2  A)  ((LK^2 )/R^2 )= sin^2  A(1−cos^2  A)  ((LK^2 )/R^2 )= sin^4  A  ⇒LK=R sin^2  A  ML+LK+KM=R (sin^2  A+sin^2  B+sin^2  C)                                   ≥R×3×(sin A sin B sin C)^(2/3)                                    >3R sin A sin B sin C                                   =(3/4)×4R sin A sin B sin C                                   =(3/4)(ab+bc+ca)  ⇒ab+bc+ca<(4/3)(ML+LK+KM)<2(ML+LK+KM)

PartIICa=bcosC=2RcosBcosCCb=acosC=2RcosAcosC(ab)2=(2RcosBcosC)2+(2RcosAcosC)2+2×2RcosBcosC×2RcosAcosC×cosC(ab)24R2=(cos2A+cos2B+cos2C+2cosAcosBcosCcos2C)cos2C(ab)24R2=(3sin2Asin2Bsin2C+2cosAcosBcosCcos2C)cos2C(ab)24R2=sin2Ccos2Cab=Rsin2Cab+bc+ca=R(sin2A+sin2B+sin2C)ab+bc+ca=4RsinAsinBsinCLK2=R2(cosBcosCcosA)2+R2(cosCcosAcosB)2+2R2(cosBcosCcosA)(cosCcosAcosB)cosALK2R2=(cosBcosCcosA)2+(cosCcosAcosB)2+2(cosBcosCcosA)(cosCcosAcosB)cosALK2R2=sin2A(cos2B+cos2C2cosAcosBcosC)LK2R2=sin2A(3sin2Asin2Bsin2C2cosAcosBcosCcos2A)LK2R2=sin2A(1cos2A)LK2R2=sin4ALK=Rsin2AML+LK+KM=R(sin2A+sin2B+sin2C)R×3×(sinAsinBsinC)23>3RsinAsinBsinC=34×4RsinAsinBsinC=34(ab+bc+ca)ab+bc+ca<43(ML+LK+KM)<2(ML+LK+KM)

Commented by Shrinava last updated on 23/Apr/22

PERFECT DEAR SIR THANKS

PERFECTDEARSIRTHANKS

Terms of Service

Privacy Policy

Contact: info@tinkutara.com