All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 169230 by Giantyusuf last updated on 26/Apr/22
Answered by Mathspace last updated on 26/Apr/22
I=x=314t∫3t23(1+t4)314dt=3−12+14∫t21+t4dt=1(43)∫t21+t4dtwehave∫t21+t4dt=∫1t2+1t2dt=12∫1−1t2+1+1t2t2+1t2dt=12∫1−1t2(t+1t)2−2dt(t+1t=u)+12∫1+1t2(t−1t)2+2(t−1t=v)=12∫duu2−2+12∫dvv2+2wehave∫duu2−2=∫du(u−2)(u+2)=122∫(1u−2−1u+2)=122ln∣u−2u+2∣+c1=122ln∣t+1t−2∣t+1t+2∣+c1=122ln(t2−2t+1t2+2t−1)+c1∫dvv2+2=v=2z∫2dz2(1+z2)=12arctanz+c2=12arvtan(v2)+c2=12arctan(x−1x2)+c2=12artan(x2−1x2)+c2⇒
Commented by Mathspace last updated on 26/Apr/22
⇒I=142ln(t2−2t+1t2+2t+1)+122arctan(t2−1t2)+Ct=x(43)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com