All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 169559 by TOTTI last updated on 03/May/22
Commented by cortano1 last updated on 03/May/22
2ndwayx(1−x)121−23(1−x)320−415(1−x)52I=∫x1−xdx=−23x(1−x)3+415(1−x)5+c
Answered by greougoury555 last updated on 03/May/22
∫x1−xdxlet1−x=u→{x=1−u2dx=−2uduI=∫(1−u2)(u)(−2u)du=−2∫(1−u2)u2du=−2∫(u2−u4)du=−2[13u3−15u5]+c=−215u3(5−3u2)+c=−215(1−x)3(5−3(1−x))+c=−215(3x+2)(1−x)3+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com