All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 172359 by mnjuly1970 last updated on 25/Jun/22
Answered by Mathspace last updated on 26/Jun/22
J=∫01x−12(1−x)−12ln2xdxletf(a)=∫01xa−12(1−x)−12dxwehavef″(a)=∫01xa−12(1−x)−12ln2xdx⇒f″(0)=∫01x−12(1−x)−12ln2xdxf(a)=∫01xa+12−1(1−x)12−1dx=B(a+12,12)=Γ(a+12)Γ(12)Γ(a+1)=π×Γ(a+12)Γ(a+1)⇒f′(a)=π×Γ′(a+12)Γ(a+1)−Γ(a+12)Γ′(a+1)Γ2(a+1)we/haveψ(x)=Γ′(x)Γ(x)⇒f′(a)=π×ψ(a+12)Γ(a+12)Γ(a+1)−Γ(a+12)ψ(a+1)Γ(a+1)Γ2(a+1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com