All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 172484 by mnjuly1970 last updated on 27/Jun/22
Answered by mr W last updated on 28/Jun/22
letθ=∠ADC10sinθ=5sinα=ADsin(θ+α)6sin2α=ADsin(θ−2α)sinθ=2sinαAD=5sin(θ+α)sinα=5(sinθtanα+cosθ)AD=6sin(θ−2α)sin2α=6(sinθtan2α−cosθ)5(sinθtanα+cosθ)=6(sinθtan2α−cosθ)11cosθ=2sinα(6tan2α−5tanα)11cosθ=−2(3−cos2αcosα)121cos2θ=4(9−6cos2α+cos4αcos2α)121(1−4sin2α)=4(9−6cos2α+cos4αcos2α)121(4cos2α−3)=4(9−6cos2α+cos4αcos2α)40×4cos4α−113cos2α−12=0cos2α=113+1132+4×40×4×122×40×4=45cosα=25⇒sinα=15sinθ=2sinα=25⇒cosθ=−15sin∠C=sin(π−α−θ)=sin(α+θ)=sinαcosθ+cosαsinθ=−15×15+25×25=35Area=10×112×35=33
Commented by Tawa11 last updated on 28/Jun/22
Greatsir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com