Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 172484 by mnjuly1970 last updated on 27/Jun/22

Answered by mr W last updated on 28/Jun/22

let θ=∠ADC  ((10)/(sin θ))=(5/(sin α))=((AD)/(sin (θ+α)))  (6/(sin 2α))=((AD)/(sin (θ−2α)))  sin θ=2 sin α  AD=((5 sin (θ+α))/(sin α))=5(((sin θ)/(tan α))+cos θ)  AD=((6 sin (θ−2α))/(sin 2α))=6(((sin θ)/(tan 2α))−cos θ)  5(((sin θ)/(tan α))+cos θ)=6(((sin θ)/(tan 2α))−cos θ)  11 cos θ=2 sin α((6/(tan 2α))−(5/(tan α)))  11 cos θ=−2((( 3−cos^2  α)/(cos α)))  121 cos^2  θ=4((( 9−6cos^2  α+cos^4  α)/(cos^2  α)))  121(1−4 sin^2  α)=4((( 9−6cos^2  α+cos^4  α)/(cos^2  α)))  121(4 cos^2  α−3)=4((( 9−6cos^2  α+cos^4  α)/(cos^2  α)))  40×4 cos^4  α−113 cos^2  α−12=0  cos^2  α=((113+(√(113^2 +4×40×4×12)))/(2×40×4))=(4/5)  cos α=(2/( (√5))) ⇒sin α=(1/( (√5)))  sin θ=2 sin α=(2/( (√5))) ⇒cos θ=−(1/( (√5)))  sin ∠C=sin (π−α−θ)=sin (α+θ)  =sin α cos θ+cos α sin θ  =−(1/( (√5)))×(1/( (√5)))+(2/( (√5)))×(2/( (√5)))=(3/5)  Area=((10×11)/2)×(3/5)=33

letθ=ADC10sinθ=5sinα=ADsin(θ+α)6sin2α=ADsin(θ2α)sinθ=2sinαAD=5sin(θ+α)sinα=5(sinθtanα+cosθ)AD=6sin(θ2α)sin2α=6(sinθtan2αcosθ)5(sinθtanα+cosθ)=6(sinθtan2αcosθ)11cosθ=2sinα(6tan2α5tanα)11cosθ=2(3cos2αcosα)121cos2θ=4(96cos2α+cos4αcos2α)121(14sin2α)=4(96cos2α+cos4αcos2α)121(4cos2α3)=4(96cos2α+cos4αcos2α)40×4cos4α113cos2α12=0cos2α=113+1132+4×40×4×122×40×4=45cosα=25sinα=15sinθ=2sinα=25cosθ=15sinC=sin(παθ)=sin(α+θ)=sinαcosθ+cosαsinθ=15×15+25×25=35Area=10×112×35=33

Commented by Tawa11 last updated on 28/Jun/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com