Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 173026 by mnjuly1970 last updated on 05/Jul/22

Answered by mr W last updated on 05/Jul/22

Commented by mr W last updated on 05/Jul/22

b=r_2 +(r_2 /(tan ((π−β−γ)/2)))=r_2 (1+tan ((β+γ)/2))  r_2 =(b/(1+tan ((β+γ)/2)))  similarly  r_1 =(a/(1+tan ((α+δ)/2)))  β+γ=π−(α+δ)  tan ((β+γ)/2)=tan ((π/2)−((α+δ)/2))=(1/(tan ((α+δ)/2)))  r_1 +r_2 =(b/(1+(1/(tan ((α+δ)/2)))))+(a/(1+tan ((α+δ)/2)))  r_1 +r_2 =((a+b tan ((α+δ)/2))/(1+tan ((α+δ)/2)))  r_1 +r_2 =((g(cos α+sin α tan ((α+δ)/2)))/(1+tan ((α+δ)/2)))  r_1 +r_2 =((g cos ((α−δ)/2))/((1+tan ((α+δ)/2))cos ((α+δ)/2)))  similarly  r_3 +r_4 =((c+d tan ((β+γ)/2))/(1+tan ((β+γ)/2)))  r_3 +r_4 =((d+c tan ((α+δ)/2))/(1+tan ((α+δ)/2)))  r_3 +r_4 =((g(cos δ+sin δ tan ((α+δ)/2)))/(1+tan ((α+δ)/2)))  r_3 +r_4 =((g cos  ((δ−α)/2))/((1+tan ((α+δ)/2))cos ((α+δ)/2)))  r_3 +r_4 =((g cos  ((α−δ)/2))/((1+tan ((α+δ)/2))cos ((α+δ)/2)))=r_1 +r_2  ✓

b=r2+r2tanπβγ2=r2(1+tanβ+γ2)r2=b1+tanβ+γ2similarlyr1=a1+tanα+δ2β+γ=π(α+δ)tanβ+γ2=tan(π2α+δ2)=1tanα+δ2r1+r2=b1+1tanα+δ2+a1+tanα+δ2r1+r2=a+btanα+δ21+tanα+δ2r1+r2=g(cosα+sinαtanα+δ2)1+tanα+δ2r1+r2=gcosαδ2(1+tanα+δ2)cosα+δ2similarlyr3+r4=c+dtanβ+γ21+tanβ+γ2r3+r4=d+ctanα+δ21+tanα+δ2r3+r4=g(cosδ+sinδtanα+δ2)1+tanα+δ2r3+r4=gcosδα2(1+tanα+δ2)cosα+δ2r3+r4=gcosαδ2(1+tanα+δ2)cosα+δ2=r1+r2

Commented by Tawa11 last updated on 06/Jul/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com